Eigenmodes of coaxial quad-ridged waveguides. Numerical results





coaxial quad-ridged waveguide, eigenmode, TEM mode, TE mode, ТМ mode, cutoff wave number, field distribution, solutions convergence, single-mode operation, operation frequency band


The results of numerical investigation of coaxial quad-ridged waveguides’ eigenmodes of two configurations (with ridges on inner or on outer perfectly conducting circular cylinder) for different cross-section dimensions are presented. In particular, dependences of cutoff wave numbers on geometrical dimensions ratios for the first three TE modes and for the first TM mode have been investigated and transversal electric field components distributions for these eigenmodes and for the TEM mode have been obtained. Besides, the optimization of coaxial quad-ridged waveguides has been carried out at antiphase excitation in order to provide maximal single-mode operation frequency band for the first TE mode. As a result two optimal configurations of coaxial quad-ridged waveguides with single-mode operation bandwidth ratios 4.6:1 have been designed. It has been defined that the waveguide with the ridges at the inner conducting circular cylinder has smaller cross-section dimensions at the fixed single-mode operation frequency band. Calculations are conducted utilizing the mathematical models obtained in [1] by the integral equations technique taking correctly into account of singular behavior of the field at ridges’ edges. Reliability of the results obtained is confirmed by the calculations based on finite difference time domain technique, which is implemented in the software package CST Microwave Studio at mesh size λ/100.


DUBROVKA, F.F. AND PILTYAY, S.I. Eigenmodes of coaxial quad-ridged waveguides. Theory. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.57, n.1, p.3-30, 2014 [in Russian], Radioelectron. Commun. Syst., v.57, n.1, p.1-30, 2014. doi: http://dx.doi.org/10.3103/S0735272714010014.

RONG, YU; ZAKI, K.A. Characteristics of generalized rectangular and circular ridge waveguides. IEEE Trans. Microwave Theory Tech., v.48, n. , p.258-265, Feb. 2000. doi: http://dx.doi.org/10.1109/22.821772">http://dx.doi.org/10.1109/22.821772.

ZARGANO, G.P.; LYAPIN, V.P.; MIKHALEVSKIY, V.S.; ET AL. Waveguides of Complex Cross Sections. Moscow: Radio i Svyaz’, 1986 [in Russian].

JARVIS, D.A.; RAO, T.C. Design of double-ridged rectangular waveguide of arbitrary aspect ratio and ridge height. IEE Proc. Microwaves, Antennas Propag., v.147, n.1, p.31-34, Feb. 2000. doi: http://dx.doi.org/10.1049/ip-map:20000013">http://dx.doi.org/10.1049/ip-map:20000013.

TANG, YIMING; ZHAO, JIANZHONG; WU, WEN. Analysis of quadruple-ridged square waveguide by multilayer perceptron neural network model. Proc. of Asia-Pacific Microwave Conf., APMC, 12–15 Dec. 2006, Yokohama, Japan. Yokohama, 2006, p.1912-1918. doi: http://dx.doi.org/10.1109/APMC.2006.4429782">http://dx.doi.org/10.1109/APMC.2006.4429782.

XU, JIN; WANG, WENXIANG; GONG, YUBIN; WEI, YANYU. Analysis of elliptical ridged waveguide. Proc. of Joint 31st Int. Conf. and 14th Int. Conf. on Infrared Millimeter Waves and Teraherz Electronics, IRMMW-THz, 18-22 Sept. 2006, Shanghai, China. Shanghai, 2006, p.265. doi: http://dx.doi.org/10.1109/ICIMW.2006.368473">http://dx.doi.org/10.1109/ICIMW.2006.368473.

RUIZ-BERNAL, M.A.; VALVERDE-NAVARRO, M.; GOUSSETIS, G.; GOMEZ-TORNERO, J.-L.; FERESIDIS, A.P. Higher order modes of the ridged coaxial waveguide. Proc. of 36th European Microwave Conf., 10-15 Sept. 2006, Manchester, UK. Manchester, 2006, p.1221-1224. doi: http://dx.doi.org/10.1109/EUMC.2006.281197">http://dx.doi.org/10.1109/EUMC.2006.281197.

DUBROVKA, F.F.; PILTYAY, S.I. Electrodynamics boundary problem solution for sectoral coaxial ridged waveguides by integral equation technique. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.5, p.3-16, 2012 [in Russian]. Radioelectron. Commun. Syst., v.55, n.5, p.191-203, 2012. doi: http://dx.doi.org/10.3103/S0735272712050019.

DUBROVKA, F.F.; PILTYAY, S.I. Eigenmodes of sectoral coaxial ridged waveguides. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.6, p.3-14, 2012 [in Russian]. Radioelectron. Commun. Syst., v.55, n.6, p.239-247, 2012. doi: http://dx.doi.org/10.3103/S0735272712060015.

DUBROVKA, F.F.; OVSIANYK, Y.A.; DUBROVKA, R.F. UA Patent No. 88320 (2009).

DUBROVKA, F.F.; OVSIANYK, Y.A.; DUBROVKA, R.F. Radiation and matching characteristics of a novel dual-band dielectric loaded coaxial horn. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.12, p.41-46, 2012 [in Russian]. Radioelectron. Commun. Syst., v.55, n.12, p.559-562, 2012. doi: http://dx.doi.org/10.3103/S0735272712120059.

OVSIANYK, Y.A.; DUBROVKA, F.F.; DUBROVKA, R.F. Analysis of dielectric loaded hybrid mode coaxial horns. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.56, n.1, p.3-23, 2013 [in Russian]. Radioelectron. Commun. Syst., v.56, n.1, p.1-19, 2013. doi: http://dx.doi.org/10.3103/S0735272713010019.

GRANET, C.; ZHANG, H.Z.; FORSYTH, A.R.; GRAVES, G.R.; DOHERTY, P.; GREENE, K.J.; JAMES, G.L.; SYKES, P.; BIRD, T.S.; SINCLAIR, M.W.; MOOREY, G. The designing, manufacturing, and testing of a dual-band feed system for the Parkes radio telescope. IEEE Antennas Propag. Mag., v.47, n.3, p.13-19, June 2005. doi: http://dx.doi.org/10.1109/MAP.2005.1532537">http://dx.doi.org/10.1109/MAP.2005.1532537.

GRANET, C.; ZHANG, H.Z.; GREENE, K.J.; JAMES, G.L.; FORSYTH, A.R.; BIRD, T.S.; MANCHESTER, R.N.; SINCLAIR, M.W.; SYKES, P. A dual-band feed system for the Parkes radio telescope. Dig. Int. Symp. IEEE Antennas and Propag., v.39, p.296-299, July 2001. doi: http://dx.doi.org/10.1109/APS.2001.959722">http://dx.doi.org/10.1109/APS.2001.959722.





Research Articles