Compact dual-band circularly polarized inverted y-shaped printed monopole antenna with edge ground
DOI:
https://doi.org/10.3103/S073527272103002XKeywords:
, Circular polarization (CP), Impedance bandwidth, C and X band.Abstract
A compact dual-band circularly polarized (CP) printed antenna with microstrip line feed is studied in this paper. It consists of an inverted y-shaped radiator with an edge ground plane on the opposite side of the substrate. The edge ground plane plays important role in impedance bandwidth (IBW) enhancement. In order to enhance the axial ratio bandwidth (ARBW) by a significant amount, the dimensions of the inverted y-shaped radiator are optimized. The value of measured IBW is equal to 4.48 GHz (4.94–9.42 GHz; 62.39%) with the resonant frequency fr = 7.18 GHz. The proposed design exhibits the simulated IBW of 5.557 GHz (4.933–10.490 GHz; 72.05%) with the resonant frequency fr = 7.7 GHz. The corresponding simulated ARBWs are equal to 742.5 MHz (fCP1 = 6.32 GHz, 11.75%) and 1091.8 MHz (fCP2 = 8.32 GHz, 13.12%) within the range of simulated and measured IBW, respectively. The presented antenna is compact with the optimized dimension of 20×20×1.6 mm3, i.e. 0.54×0.54×0.044λgL3, where λgL is the guided wavelength at the simulated lower resonant frequency fgL = 4.933 GHz with size reduction of 39.7%. It is fabricated on the low cost FR-4 substrate with copper cladding. Measurement results validate simulated data from Ansys Electronics Desktop 2020 R1. The maximum simulated peak gain is equal to 4.796 dBi at 8.64 GHz within the CP band. The proposed antenna can be suitable for some portions of C- and X-, and ITU-8 GHz band wireless communication applications.
References
B. Y. Toh, R. Cahill, V. F. Fusco, “Understanding and measuring circular polarization,” IEEE Trans. Educ., vol. 46, no. 3, pp. 313–318, 2003, doi: https://doi.org/10.1109/TE.2003.813519.
R. Garg, P. Bhartia, I. J. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook. Artech House, 2001.
W. L. Langston, D. R. Jackson, “Impedance, axial-ratio, and receive-power bandwidths of microstrip antennas,” IEEE Trans. Antennas Propag., vol. 52, no. 10, pp. 2769–2773, 2004, doi: https://doi.org/10.1109/TAP.2004.834421.
Intelsat, “The Globalized Network,” Global NetworkIntelsat, 2018. http://www.intelsat.com/global-network/ (accessed Jul. 28, 2020).
A. Kirilyuk, A. V. Kimel, T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys., vol. 82, no. 3, pp. 2731–2784, 2010, doi: https://doi.org/10.1103/RevModPhys.82.2731.
[6] D. V. Chubukov, L. V. Skripnikov, L. Bougas, L. N. Labzowsky, “P,T-odd Faraday rotation on atoms and molecules in intra-cavity absorption spectroscopy as an alternative way to search for the P,T-odd effects in nature,” 2019, uri: http://arxiv.org/abs/1907.11761.
J. Sen Kuo, G. Bin Hsieh, “Gain enhancement of a circularly polarized equilateral-triangular microstrip antenna with a slotted ground plane,” IEEE Trans. Antennas Propag., vol. 51, no. 7, pp. 1652–1656, 2003, doi: https://doi.org/10.1109/TAP.2003.813621.
K. L. Chung, “A wideband circularly polarized H-shaped patch antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3379–3383, 2010, doi: https://doi.org/10.1109/TAP.2010.2055794.
A. K. Gautam, A. Kunwar, B. K. Kanaujia, “Circularly polarized arrowhead-shape slotted microstrip antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 471–474, 2014, doi: https://doi.org/10.1109/LAWP.2014.2309719.
J. M. Kovitz, H. Rajagopalan, Y. Rahmat-Samii, “Circularly polarised half E-shaped patch antenna: A compact and fabrication-friendly design,” IET Microwaves, Antennas Propag., vol. 10, no. 9, pp. 932–938, 2016, doi: https://doi.org/10.1049/iet-map.2015.0550.
G. Bin Hsieh, M. H. Chen, K. L. Wong, “Single-feed dual-band circularly polarised microstrip antenna,” Electron. Lett., vol. 34, no. 12, pp. 1170–1171, 1998, doi: https://doi.org/10.1049/el:19980909.
Nasimuddin, Z. N. Chen, X. Qing, “Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio,” IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 2112–2115, 2010, doi: https://doi.org/10.1109/TAP.2010.2046851.
C.-J. Wang, M.-H. Shih, L.-T. Chen, “A wideband open-slot antenna with dual-band circular polarization,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1306–1309, 2015, doi: https://doi.org/10.1109/LAWP.2015.2403572.
K. Kandasamy, B. Majumder, J. Mukherjee, K. P. Ray, “Dual-band circularly polarized split ring resonators loaded square slot antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3640–3645, 2016, doi: https://doi.org/10.1109/TAP.2016.2565729.
Q. Chen et al., “Novel dual-band asymmetric U-shaped slot antenna for dual-circular polarization,” Int. J. RF Microw. Comput. Eng., vol. 27, no. 1, p. e21047, 2017, doi: https://doi.org/10.1002/mmce.21047.
K. Saraswat, A. R. Harish, “Dual‐band CP coplanar waveguide‐fed split‐ring resonator‐loaded G‐shaped slot antenna with wide‐frequency ratio,” IET Microwaves, Antennas Propag., vol. 12, no. 12, pp. 1920–1925, 2018, doi: https://doi.org/10.1049/iet-map.2018.0173.
A. A. Deshmukh, P. Zaveri, “Sequentially rotated gap‐coupled variations of plus shape microstrip antennas for dual band circular polarized response,” Int. J. RF Microw. Comput. Eng., vol. 28, no. 9, p. 0, 2018, doi: https://doi.org/10.1002/mmce.21431.
R. Xu, J. Li, J. Liu, S. Zhou, K. Wei, “Design of spiral slot‐based dual‐wideband dual‐sense CP antenna,” IET Microwaves, Antennas Propag., vol. 13, no. 1, pp. 76–81, 2019, doi: https://doi.org/10.1049/iet-map.2018.5372.
A. M. Jie, N. Nasimuddin, M. F. Karim, K. T. Chandrasekaran, “A dual-band efficient circularly polarized rectenna for RF energy harvesting systems,” Int. J. RF Microw. Comput. Eng., vol. 29, no. 1, p. e21665, 2019, doi: https://doi.org/10.1002/mmce.21665.
D. Barad, S. Mohapatra, S. B. Behera, S. Behera, “Integrated circular polarized microstrip antenna with dual‐mode‐polarization insensitive characteristics,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 2, p. 222039, 2020, doi: https://doi.org/10.1002/mmce.22039.
A. A. Qureshi, M. U. Afzal, T. Tauqeer, M. A. Tarar, “Performance analysis of FR-4 substrate for high frequency microstrip antennas,” in 2011 China-Japan Joint Microwave Conference, 2011, uri: https://ieeexplore.ieee.org/document/5773952.
S. J. Mumby, J. Yuan, “Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement,” J. Electron. Mater., vol. 18, no. 2, pp. 287–292, 1989, doi: https://doi.org/10.1007/BF02657420.
N. K. Tiwari, Y. Tiwari, M. J. Akhtar, “Design of CSRR-based electronically tunable compact RF sensor for material testing,” IEEE Sensors J., vol. 18, no. 18, pp. 7450–7457, 2018, doi: https://doi.org/10.1109/JSEN.2018.2861365.
J. Wu, X. Ren, Z. Wang, Y. Yin, “Broadband circularly polarized antenna with L-shaped strip feeding and shorting-pin loading,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 1733–1736, 2014, doi: https://doi.org/10.1109/LAWP.2014.2354050.
R. Xu, J.-Y. Li, Y.-X. Qi, G.-W. Yang, J.-J. Yang, “A design of triple-wideband triple-sense circularly polarized square slot antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1763–1766, 2017, doi: https://doi.org/10.1109/LAWP.2017.2674677.
P. V. Naidu, A. Kumar, “ACS-fed e-shaped dual band uniplanar printed antenna for modern wireless communication applications,” Radioelectron. Commun. Syst., vol. 61, no. 3, pp. 87–93, 2018, doi: https://doi.org/10.3103/S0735272718030019.
P. V. Naidu, A. Kumar, “ACS-fed wideband mirrored Z- and L-shaped triple band uniplanar antenna for WLAN applications,” Radioelectron. Commun. Syst., vol. 62, no. 2, pp. 86–95, 2019, doi: https://doi.org/10.3103/S0735272719020043.
J.-Y. Sze, J.-C. Wang, C.-C. Chang, “Axial-ratio bandwidth enhancement of asymmetric-CPW-fed circularly-polarised square slot antenna,” Electron. Lett., vol. 44, no. 18, p. 1048, 2008, doi: https://doi.org/10.1049/el:20081858.
C. Sun, H. Zheng, L. Zhang, Y. Liu, “Analysis and design of a novel coupled shorting strip for compact patch antenna with bandwidth enhancement,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 1477–1481, 2014, doi: https://doi.org/10.1109/LAWP.2014.2341596.
B. T. P. Madhav, M. Monika, B. M. S. Kumar, B. Prudhvinadh, “Dual band reconfigurable compact circular slot antenna for WiMAX and X-band applications,” Radioelectron. Commun. Syst., vol. 62, no. 9, pp. 474–485, 2019, doi: https://doi.org/10.3103/S0735272719090048.
M. Rezvani, Y. Zehforoosh, P. Beigi, “Circularly-polarized and high-efficiency microstrip antenna with C-shaped stub for WLAN and WiMAX applications,” Radioelectron. Commun. Syst., vol. 62, no. 11, pp. 604–608, 2019, doi: https://doi.org/10.3103/S0735272719110062.
R. Dhara, S. K. Jana, M. Mitra, “Tri-band circularly polarized monopole antenna for wireless communication application,” Radioelectron. Commun. Syst., vol. 63, no. 4, pp. 213–222, 2020, doi: https://doi.org/10.3103/S0735272720040044.
R. Dhara, “Quad-band circularly polarized CPW-fed G-shaped printed antenna with square slot,” Radioelectron. Commun. Syst., vol. 63, no. 7, pp. 376–385, 2020, doi: https://doi.org/10.3103/S0735272720070055.
R. Dhara, S. Yadav, M. M. Sharma, S. K. Jana, M. C. Govil, “A circularly polarized quad-band annular ring antenna with asymmetric ground plane using theory of characteristic modes,” Prog. Electromagn. Res. M, vol. 100, pp. 51–68, 2021, doi: https://doi.org/10.2528/PIERM20102006.
R. Dhara, S. K. Jana, “A single microstrip feed C shaped dual circularly polarized slotted monopole antenna,” in 2017 IEEE Applied Electromagnetics Conference (AEMC), 2017, vol. 2018-Janua, pp. 1–2, doi: https://doi.org/10.1109/AEMC.2017.8325637.
R. Dhara, S. K. Jana, M. Mitra, A. Chatterjee, “A circularly polarized T-shaped patch antenna for wireless communication application,” in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), 2018, pp. 1–5, doi: https://doi.org/10.1109/INCAP.2018.8770806.
R. Dhara, S. K. Jana, M. Mitra, “CPW-fed triple-band circularly polarized printed inverted C-shaped monopole antenna with closed-loop and two semi-hexagonal notches on ground plane,” in Optical and Wireless Technologies, Singapore: Springer, 2020, pp. 161–175.
N. T. and I. A. O. of S. Management, “Federal Spectrum Use Summary, 30 MHz – 3000 GHz,” 2010. uri: https://www.ntia.doc.gov/files/ntia/Spectrum_Use_Summary_Master-06212010.pdf.
NASA, “Spectrum 101 An Introduction to National Aeronautics and Space Administration Spectrum Management,” 2016. uri: https://www.nasa.gov/sites/default/files/atoms/files/spectrum_101.pdf.
FCC, “Expanding Flexible Use in Mid-Band Spectrum Between 3.7 and 24 GHz,” 2017. uri: https://www.fcc.gov/document/fcc-expands-flexible-use-mid-band-spectrum.
T. T. Le, H. C. Park, “Very simple circularly polarised printed patch antenna with enhanced bandwidth,” Electron. Lett., vol. 50, no. 25, pp. 1896–1898, 2014, doi: https://doi.org/10.1049/el.2014.2963.
C. A. Balanis, Antenna Theory: Analysis and Design. New Jersey: Wiley, 2016, uri: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.
G. Kumar, K. P. Ray, Broadband Microstrip Antennas. Boston, MA and London, UK: Artech House, 2002.
S. S. Gao, Q. Luo, F. Zhu, Circularly Polarized Antennas. Wiley-IEEE Press, 2014, uri: https://www.wiley.com/en-us/Circularly+Polarized+Antennas-p-9781118374412.
R. Dhara, M. Mitra, “A triple-band circularly polarized annular ring antenna with asymmetric ground plane for wireless applications,” Eng. Reports, vol. 2, no. 4, p. 0, 2020, doi: https://doi.org/10.1002/eng2.12150.