Active inductor-based ultra-wideband low noise amplifier for rejection of wireless LAN interference

Authors

DOI:

https://doi.org/10.3103/S0735272721010039

Keywords:

Active inductor, UWB, interference rejection, low noise amplifier, LNA, ultra-wideband (UWB).

Abstract

This paper presents a low noise amplifier (LNA) for the ultra-wideband (UWB) application in the range 3.1–10.6 GHz based on active inductor topology. The LNA is designed to provide a flat gain and to reject wireless local area networking interference at 5–6 GHz band. An active inductor based on the feedback resistor topology is proposed in this work and integrated with the LNA. The use of an active inductor instead of a conventional CMOS spiral inductor provides advantages over the area, quality factor, and inductance. The active inductor provides a relatively uniform inductance at 5–6 GHz and is used to design an on-chip notch filter circuit, which achieves a maximum attenuation of 45 dB at the center frequency of ~5.6 GHz. The LNA is designed and processed in the standard 0.18 mm CMOS technology. The simulated LNA exhibits the gain of 20 dB and a noise figure of less than 3.7 dB in the non-interfering bands. The input (S11) and output return losses (S22) are less than –10 and –12 dB, respectively, in the allocated UWB frequency spectrum, and amplifier occupies a chip area of 0.54 µm2. The proposed LNA has a superior flat gain, excellent interference rejection, minimum return losses, and a low noise figure in the intended operation band. This LNA finds important application in the radiofrequency front-end devices for UWB application.

Author Biography

Nischal Koirala, University of Alabama

Electrical and Computer Engineering

References

N. Li, W. Feng, X. Li, “A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 4, pp. 383–385, 2017, doi: https://doi.org/10.1109/LMWC.2017.2679203.

R. Jafarnejad, A. Jannesari, J. Sobhi, “A linear ultra wide band low noise amplifier using pre-distortion technique,” AEU - Int. J. Electron. Commun., vol. 79, pp. 172–183, 2017, doi: https://doi.org/10.1016/j.aeue.2017.05.046.

V. Singh, S. Arya, M. Kumar, “A 0.7 V, ultra-wideband common gate LNA with feedback body bias topology for wireless applications,” J. Low Power Electron. Appl., vol. 8, no. 4, p. 42, 2018, doi: https://doi.org/10.3390/jlpea8040042.

N. Koirala, R. K. Pokharel, A. I. A. Galal, H. Kanaya, K. Yoshida, “Design of a Low Noise Amplifier with integrated notch filter for interference rejection in ultra-wideband systems,” in 2011 China-Japan Joint Microwave Conference Proceedings, CJMW 2011, 2011, pp. 409–412, uri: https://ieeexplore.ieee.org/document/5774018.

H. Rastegar, S. Saryazdi, A. Hakimi, “A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6GHz wireless applications in 0.13μm CMOS process,” Microelectron. J., vol. 44, no. 3, pp. 201–209, 2013, doi: https://doi.org/10.1016/j.mejo.2013.01.004.

S. Pandey, P. N. Kondekar, K. Nigam, D. Sharma, “A 0.9V, 3.1–10.6 GHz CMOS LNA with high gain and wideband input match in 90 nm CMOS process,” in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2016, pp. 730–733, doi: https://doi.org/10.1109/APCCAS.2016.7804079.

N. Koirala, A. Anand, R. K. Pokharel, H. Kanaya, K. Yoshida, “A highly attenuative CMOS LNA at 5-6 GHz using negative G M circuit for UWB applications,” Microw. Opt. Technol. Lett., vol. 55, no. 4, pp. 894–899, 2013, doi: https://doi.org/10.1002/mop.27464.

I. Hwang, I. Kwon, “Ultra-wideband CMOS low-noise amplifier with active interferer rejection,” IEICE Electron. Express, vol. 13, no. 16, pp. 20160597–20160597, 2016, doi: https://doi.org/10.1587/elex.13.20160597.

C.-P. Liang, P.-Z. Rao, T.-J. Huang, S.-J. Chung, “Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 277–286, 2010, doi: https://doi.org/10.1109/TMTT.2009.2037855.

Y. Gao, Y. Zheng, B.-L. Ooi, “A 0.18-μm CMOS UWB LNA with 5 GHz interference rejection,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 47–50, doi: https://doi.org/10.1109/RFIC.2007.380830.

G. T. Ahmed, A. S. Elkorany, D. A. Saleeb, “Planar UWB antenna with double band rejection capability using double inclined ESRRs,” Radioelectron. Commun. Syst., vol. 62, no. 3, pp. 119–126, 2019, doi: https://doi.org/10.3103/S0735272719030038.

D. Thiripurasundari, D. S. Emmanuel, “CPW fed slot antenna with reconfigurable rejection bands for UWB application,” Radioelectron. Commun. Syst., vol. 56, no. 6, pp. 278–284, 2013, doi: https://doi.org/10.3103/S0735272713060022.

A. Kumar, M. K. Singh, “Band-notched planar UWB microstrip antenna with T-shaped slot,” Radioelectron. Commun. Syst., vol. 61, no. 8, pp. 371–376, 2018, doi: https://doi.org/10.3103/S0735272718080058.

B. Premalatha, M. V. S. Prasad, M. B. R. Murthy, “Multi-band notched antennas for UWB applications,” Radioelectron. Commun. Syst., vol. 62, no. 12, pp. 609–618, 2019, doi: https://doi.org/10.3103/S073527271912001X.

V. Singh, S. K. Arya, M. Kumar, “A 3–14 GHz, self-body biased common-gate UWB LNA for wireless applications in 90 nm CMOS,” J. Circuits, Syst. Comput., vol. 28, no. 04, p. 1950056, 2019, doi: https://doi.org/10.1142/S0218126619500567.

Y. Y. Tey, H. Ramiah, N. M. Noh, “Design of low noise, flat gain CMOS-based ultra-wideband low noise amplifier for cognitive radio application,” IETE J. Res., vol. 63, no. 4, pp. 514–522, 2017, doi: https://doi.org/10.1080/03772063.2017.1301227.

E. Sobotta, G. Belfiore, F. Ellinger, “Ultra compact multi-standard low-noise amplifiers in 28 nm CMOS with inductive peaking,” Int. J. Microw. Wirel. Technol., vol. 10, no. 1, pp. 47–57, 2018, doi: https://doi.org/10.1017/S1759078717001076.

R. Jafarnejad, A. Jannesari, J. Sobhi, “Pre-distortion technique to improve linearity of low noise amplifier,” Microelectron. J., vol. 61, pp. 95–105, 2017, doi: https://doi.org/10.1016/j.mejo.2017.01.006.

B. Park, S. Choi, S. Hong, “A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems,” IEEE Microw. Wirel. Components Lett., vol. 20, no. 1, pp. 40–42, 2010, doi: https://doi.org/10.1109/LMWC.2009.2035963.

R.-C. Liu, K.-L. Deng, H. Wang, “A 0.6-22-GHz broadband CMOS distributed amplifier,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003, pp. 103–106, doi: https://doi.org/10.1109/RFIC.2003.1213903.

A. I. A. Galal, R. K. Pokharel, H. Kanay, K. Yoshida, “Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18μm CMOS process,” in 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010, pp. 33–36, doi: https://doi.org/10.1109/SMIC.2010.5422832.

M. Chandra Praveen, V. Vaithianathan Venkatesan, J. Raja, R. Srinivasan, “Active inductor based differential Low Noise Amplifier for ultra wide band applications,” in 2012 International Conference on Recent Trends in Information Technology, 2012, pp. 401–406, doi: https://doi.org/10.1109/ICRTIT.2012.6206797.

M. M. Reja, I. Filanovsky, K. Moez, “A compact CMOS UWB LNA using tunable active inductors for WLAN interference rejection,” in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 281–284, doi: https://doi.org/10.1109/ISCAS.2011.5937556.

M. U. Nair, Y. Zheng, Y. Lian, “An active inductor based low-power UWB LNA,” in 2007 IEEE International Conference on Ultra-Wideband, 2007, pp. 813–816, doi: https://doi.org/10.1109/ICUWB.2007.4381056.

X. Ma, B. Duan, Y. Yang, “A 500–600 MHz GaN power amplifier with RC–LC stability network,” J. Semicond., vol. 38, no. 8, p. 085003, 2017, doi: https://doi.org/10.1088/1674-4926/38/8/085003.

J. Manjula, S. Malarvizhi, “Active inductor based tunable multiband RF front end design for UWB applications,” Analog Integr. Circuits Signal Process., vol. 95, no. 2, pp. 195–207, 2018, doi: https://doi.org/10.1007/s10470-018-1168-7.

N. Saifullah, Z. Zakaria, A. Salleh, S. R. Ab Rashid, A. Bruster, “Integrated low noise amplifier with notch filter using DMS technique for ultra-wideband application,” in 2016 3rd International Conference on Electronic Design (ICED), 2016, pp. 56–61, doi: https://doi.org/10.1109/ICED.2016.7804606.

M. R. Salehi, A. Abiri, H. Shahraki, “Design of a 4-10 GHz low noise amplifier based on coupled inductors for communication systems,” in Proceedings of the 5th International Conference on Communications, Computers and Applications, MIC-CCA 2012, 2012, pp. 35–40, uri: https://ieeexplore.ieee.org/document/6516780.

F. Akbar, M. Atarodi, S. Saeedi, “Design method for a reconfigurable CMOS LNA with input tuning and active balun,” AEU - Int. J. Electron. Commun., vol. 69, no. 1, pp. 424–431, 2015, doi: https://doi.org/10.1016/j.aeue.2014.10.019.

M. I. Malek, S. Saini, “Improved two stage ultra-wideband CMOS low noise amplifier with out band rejection using low noise active inductor,” in 2015 International Conference on Signal Processing and Communication Engineering Systems, 2015, pp. 157–161, doi: https://doi.org/10.1109/SPACES.2015.7058237.

J.-J. Wang, D.-Y. Chen, S.-F. Wang, R.-S. Wei, “A multi-band low noise amplifier with wide-band interference rejection improvement,” AEU - Int. J. Electron. Commun., vol. 70, no. 3, pp. 320–325, 2016, doi: https://doi.org/10.1016/j.aeue.2015.12.010.

J.-J. Wang, D.-Y. Chen, “LNA with wide range of gain control and wideband interference rejection,” Int. J. Electron., vol. 103, no. 10, pp. 1748–1758, 2016, doi: https://doi.org/10.1080/00207217.2016.1138528.

Layout of proposed UWB LNA for chip fabrication purpose

Published

2021-01-30

Issue

Section

Research Articles