Parametric spectral analysis of noisy signals with unimodal spectrum

Authors

  • Vladimir G. Andrejev Ryazan State Radio Engineering University, Russian Federation https://orcid.org/0000-0003-3059-3532
  • Ngoc L. Tran Ryazan State Radio Engineering University, Russian Federation
  • Tien P. Nguyen Le Quy Don Technical University, Viet Nam

DOI:

https://doi.org/10.3103/S0735272719010059

Keywords:

spectrum, spectral estimation, autocorrelation sequence, autoregressive model, autoregression, power spectral density, parametric evaluation

Abstract

The article proposes a method for the coefficients reconstruction of a discrete autocorrelation function of random signals with a unimodal power spectral density to construct their parametric models. The method is based on finding the optimal values of the relative width ΔFT and the weighting factor α in [0; 1] of the spectral mode, which characterizes the share of the Gaussian and resonant components in the spectrum envelope. The proposed method makes it possible to reduce by 1.5–4 times the discrepancy between the control and estimated spectra in comparison with the known approaches to parametric spectral analysis. An increase in the adequacy of spectral estimation makes it possible to reduce the length M of the analyzed time sample by a factor of 2.3–4 times, while maintaining the accuracy of the spectral analysis achieved by other known parametric methods. Winnings are achieved by using a priori information about the spectral properties of the analyzed process.

References

MARPLE, Jr., S. Lawrence. Digital Spectral Analysis with Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1987.

ANDREJEV, V.G. “Optimization of autoregressive models of interfering radio-reflections,” Radioelectron. Commun. Syst., v.51, n.7, p.377, 2008. DOI: https://doi.org/10.3103/S0735272708070042.

PIZA, D.M.; BUGROVA, T.I.; LAVRENTIEV, V.N.; SEMENOV, D.S. “Method of forming classified training sample in case of spacial signal processing under influence of combined interference,” Radioelectron. Commun. Syst., v.61, n.7, p.325, 2018. DOI: https://doi.org/10.3103/S0735272718070051.

ANDREJEV, V.G.; TRAN, N.L.; BELOKUROV, V.A. “Parametric spectral analysis for noisy signals with Gaussian spectrum,” Vestnik of Ryazan State Radio Engineering University, n.55, p.16, 2016. DOI: http://doi.org/10.21667/1995-4565-2016-55-1-16-21.

KAY, S.M.; MARPLE, Jr., S.L. “Spectrum analysis-A modern perspective,” Proc. IEEE, v.69, n.11, p.1380, 1981. DOI: https://doi.org/10.1109/PROC.1981.12184.

ANDREYEV, V.G.; NGUYEN, T.P. “Cardiosignals processing with clutter and noise as background,” Vestnik of Ryazan State Radio Engineering University, n.48, p.60, 2014. URI: https://elibrary.ru/item.asp?id=21724317.

LEKHOVYTSKIY, D.I. “Adaptive lattice filters for systems of space-time processing of non-stationary Gaussian processes,” Radioelectron. Commun. Syst., v.61, n.11, p.477, 2018. DOI: https://doi.org/10.3103/S0735272718110018.

DVINSKIKH, V.A.; RAZUMIKHIN, K.A. “Spectral analysis of digital quasiperiodic signals,” Radioelectron. Commun. Syst., 48, No. 8, 14 (2005). URI: http://radioelektronika.org/article/view/S0735272705080030.

BISINA, K.V.; AZEEZ, Maleeha Abdul. “Optimized estimation of power spectral density,” Proc. of Int. Conf. on Intelligent Computing and Control Systems, ICICCS, 15-16 Jun. 2017, Madurai, India. IEEE, 2017. DOI: https://doi.org/10.1109/ICCONS.2017.8250588.

PUKHOVA, V.M.; KUSTOV, T.V.; FERRINI, G. “Time-frequency analysis of non-stationary signals,” Proc. of IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus, 29 Jan.-1 Feb. 2018, Moscow, Russia. IEEE, 2018. DOI: https://doi.org/10.1109/EIConRus.2018.8317292.

BAKULEV, P.A.; KOSHELEV, V.I.; ANDREJEV, V.G. “Optimizing of ARMA using echo modeling,” Radioelectron. Commun. Syst., v.37, n.9, p.38, 1994.

ANDREYEV, V.G.; TRAN, N.L. “Synthesis of modified overdetermined autoregression model of random process in short sample,” Vestnik of Ryazan State Radio Engineering University, n.54, p.45, 2015. URI: https://elibrary.ru/item.asp?id=25588818.

AKAIKE, H. “Power spectrum estimation through autoregressive model fitting,” Ann. Inst. Stat. Math., v.21, p.407, 1969. DOI: https://doi.org/10.1007/BF02532269.

KOSHELEV, V.I. ARMA Models of Random Processes. Applied Problems of Synthesis and Optimization [in Russian]. Moscow: Radio i Svyaz’, 2002.

ANDREJEV, V.G. “Optimization of autoregressive models of radio reflections,” Vestnik of Ryazan State Radio Engineering University, n.35, p.12, 2011. URI: https://elibrary.ru/item.asp?id=15617928.

ANDREJEV, V.G.; NGUYEN, Sh.V. “Parametrical modeling of the correlated radio-reflections for the echo-signals processing efficiency analysis,” Vestnik of Ryazan State Radio Engineering University, n.18, p.40, 2006. URI: https://elibrary.ru/item.asp?id=11743408.

KOSHELEV, V.I.; ANDREJEV, V.G. “Synthesis of ARMA-models of echo signals,” Radioelectron. Commun. Syst., v.36, n.7, p.8, 1993.

TUUK, Peter B.; MARPLE, S. Lawrence. “Compressed sensing radar amid noise and clutter using interference covariance information,” IEEE Trans. Aerospace Electronic Syst., v.50, n.2, p.887, Apr 2014. DOI: https://doi.org/10.1109/TAES.2014.120523.

ANDREJEV, V.G.; NGUEN, Sh.V. “Optimization of filters for simulation of interfering radio reflections in the investigation of systems of echo-signal primary processing,” Radioelectron. Commun. Syst., v.49, n.10, p.47, 2006. URI: http://radioelektronika.org/article/view/S0735272706100074.

ANDREJEV, V.G.; NGUYEN, T.P. “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst., v.58, n.2, p.85, 2015. DOI: https://doi.org/10.3103/S0735272715020053.

GORELIK, A.G.; KOLOMIETS, S.F.; KUPRIYANOV, P.V. “Scattered spectrum shape as a new information source about scattering medium characteristics and dynamic processes involved,” Civil Aviation High Technologies. Radiophisics and Electronics Series, n.176, p.18, 2012.

KOLOMIETS,S.F. “Interpretation of the Z-R ratio in rains at finite periods of measurement time, taking into account the Mie scattering conditions,” Achievements of Modern Radioelectronics, n.12, p.51, 2007. URI: http://www.radiotec.ru/article/2154.

Published

2019-01-25

Issue

Section

Research Articles