S-shaped metamaterial ultra-wideband directive patch antenna
DOI:
https://doi.org/10.3103/S0735272718090029Keywords:
antenna, metamaterial, MTM, negative index material, negative refraction, RMPA, DNG, HFSS, MNGAbstract
Antenna parameter optimization using S-shaped metamaterial embedded in antenna substrate is elucidated in this paper. Upon incorporation of proposed metamaterial array inside the antenna substrate, the bandwidth of antenna increases by 74% and directivity by about 11%. Results obtained are in good coherence when using the FEM based Ansoft HFSS simulation and MATLAB programming based on CAD formulas using the equivalent circuit analysis of patch antenna. The evolution of ‘S-shape’ has been explained beginning from the primitive Single Split Ring Resonator’s shape. The proposed structure was fabricated and nearly 6% deviation was obtained in comparison with the simulation results. This metamaterial antenna overcomes the low bandwidth limitation of patch antenna and helps in maintaining a low profile by obtaining 81% miniaturization.References
SCHANTZ, H. The Art and Science of Ultra-Wideband Antennas. Artech House, 2005.
BALANIS, C.A. Antenna Theory, 4th ed. John Wiley & Sons, Inc., 2016.
POZAR, D.M. “Microstrip antennas,” Proc. IEEE, v.80, n.1, p.79-91, 1992. DOI: https://doi.org/10.1109/5.119568.
VOLAKIS, J. Antenna Engineering Handbook, 4th ed. McGraw Hill, 2007.
WANG. S.; FERESIDIS, A.P.; GOUSSETIS, G.; VARDAXOGLOU, J.C. “Low-profile resonant cavity antenna with artificial magnetic conductor ground plane,” Electronics Lett., v.40, n.7, p.405-406, 2004. DOI: https://doi.org/10.1049/el:20040306.
AHSAN, M.R.; ISLAM, M.T.; ULLAH, M.H.; MISRAN, N. “Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding,” The Scientific World J., v.2014, ID 856504, 2014. DOI: http://dx.doi.org/10.1155/2014/856504.
LEE, K.F.; LUK, K.M.; MAK, K.M.; YANG, S.L.S. “On the use of U-slots in the design of dual-and triple-band patch antennas,” IEEE Antennas Propag. Mag., v.53, n.3, p.60-74, 2011. DOI: https://doi.org/10.1109/MAP.2011.6028422.
WONG, K.-L. Compact and Broadband Microstrip Antennas. Hoboken, NJ: Wiley-Interscience, 2004.
DAWAR, Parul; RAGHAVA, N.S.; DE, Asok. “Ultra wide band, multi-resonance antenna using swastika metamaterial,” Int. J. Microwave Optical Technology, v.11, n.6, p.423, 2016.
AHSAN, M.R.; ISLAM, M.T.; ULLAH, M.H.; SINGH, M.J.; ALI, M.T. “Metasurface reflector (MSR) loading for high performance small microstrip antenna design,” PLOS One, May, 2015. DOI: https://doi.org/10.1371/journal.pone.0127185.
LINDEN, S.; ENKRICH, C.; DOLLING, G.; KLEIN, M.W.; ZHOU, J.; KOSCHNY, T.; SOUKOULIS, C.M.; BURGER, S.; SCHMIDT, F.; WEGENER, M. “Photonic metamaterials: Magnetism at optical frequencies,” IEEE J. Selected Topics Quantum Electronics, v.12, n.6, p.1097-1105, 2006. DOI: https://doi.org/10.1109/JSTQE.2006.880600.
XIONG, Han; HONG, Jing-Song; TAN, Ming-Tao; LI, Bing. “Compact microstrip antenna with metamaterial for wideband applications,” Turk. J. Electrical Eng. Comp. Sci., v.21, p.2233-2238, 2013. DOI: http://doi.org/10.3906/elk-1204-6.
KAUR, P.; AGGARWAL, S.K.; DE, A. “Performance enhancement of rectangular microstrip patch antenna using double H shaped metamaterial,” Radioelectron. Commun. Syst., v.59, n.11, p.496, 2016. DOI: https://doi.org/10.3103/S0735272716110030.