System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid
DOI:
https://doi.org/10.3103/S0735272717080015Keywords:
spectral analysis, linear and non-linear integral transformations, wideband index, signal structure, source parameters, propagation channel, problems of detection and identificationAbstract
There are represented the results of the system spectral analysis using a set of linear and non-linear integral transformations for the time registrations of the acoustic signal generated by the Chelyabinsk meteoroid and registered by the Antarctic infrasonic station. The detailed time-frequency signal structure is analyzed.References
REED, J.W. Airblast overpressure decay at long ranges. J. Geophys. Res., v.77, p.1623-1629, 1972. DOI: http://doi.org/10.1029/JC077i009p01623.
REVELLE, D.O. On meteor-generated infrasound. J. Geophys. Res., v.81, p.1217-1230, 1976. DOI: http://doi.org/10.1029/JA081i007p01217.
EDWARDS, W.N.; BROWN, P.G.; REVELLE, D.O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Solar-Terr. Phys., v.68, n.10, p.1136-1160, 2006. DOI: https://doi.org/10.1016/j.jastp.2006.02.010.
STEVENS, J.L.; ADAMS, D.A.; BAKER, G.E.; MURPHY, J.R. Infrasound scaling and attenuation relations from Soviet explosion data and instrument design criteria from experiments and simulations. Proc. of 21th Annual Seismic Research Symp. on Monitoring a CTBT, 1999, p.185-194.
SILBER, E.A.; REVELLE, D.O.; BROWN, P.G.; EDWARDS, W.N. An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J. Geophys. Res., v.114, p.1-8, 2009. DOI: http://doi.org/10.1029/2009JE003334.
EDWARDS, W.N. Meteorgenerated Infrasound: Theory and Observation. Dordrecht, Netherlands: Springer, 2010, p.361-414.
SILBER, E.A.; LE PICHON, A.; BROWN, P.G. Infrasound detection of a near-Earth object impact over Indonesia on 8 October 2009. Geophys. Res. Lett., v.38, n.12, 2011. DOI: http://doi.org/10.1029/2011GL047633.
ENS, T.A.; BROWN, P.G.; EDWARDS, W.N.; SILBER, E.A. Infrasound production by bolides: A global statistical study. J. Atmos. Solar-Terr. Phys., v.80, p.208-229, 2012. DOI: https://doi.org/10.1016/j.jastp.2012.01.018.
EMEL’YANENKO, V.V.; POPOVA, O.P.; CHUGAI, N.N.; SHELYAKOV, M.A.; PAKHOMOV, Y.V.; SHUSTOV, B.M.; SHUVALOV, V.V.; BIRYUKOV, E.E.; RYBNOV, Y.S.; MAROV, M.Y.; RYKHLOVA, L.V.; NAROENKOV, S.A.; KARTASHOVA, A.P.; KHARLAMOV, V.A.; TRUBETSKAYA, I.A. Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013). Sol. Syst. Res., v.47, n.4, p.240-254, 2013. DOI: https://doi.org/10.1134/S0038094613040114.
RYBNOV, Y.S.; POPOVA, O.P.; KHARLAMOV, V.A.; ET AL. Estimation of energy of the Chelyabinsk fireball by infrasonic measurements. Dinamicheskie Processy v Geosferah, Proc. of IDG RAN. Moscow: Geos, 2013, n.4, p.21-31.
ALPATOV, V.V.; BUROV, V.A.; VAGIN, Y.P.; ET AL. Geophysical Conditions under Explosion of Chelyabinsk (Chebarkul) Meteoroid of 15.02.2013 [in Russian]. Moscow: FGBU IPG, 2013.
SOROKIN, A.G. About infrasound radiation of Chelyabinsk meteoroid. Proc. of XXIV All-Russian Sci. Conf. on Radiowave Propagation, RRV-24, 29 Jun.-5 Jul. 2014, Irkutsk, Russia. 2014, v.III, p.242-245.
LE PICHON, A.; CERANNA, L.; PILGER, C.; MIALLE, PIERRICK; BROWN, DAVID; HERRY, PASCAL; BRACHET, NICOLAS. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett., v.40, n.14, p.3732-3737, 2013. DOI: http://doi.org/10.1002/grl.50619.
CHERNOGOR, L.F. Plasma, electromagnetic and acoustic effects of meteorite ‘Chelyabinsk’. Inzhenernaya Fizika, n.8, p.23-40, 2013. URL: https://elibrary.ru/item.asp?id=21790207.
CHERNOGOR, L.F.; ROZUMENKO, V.T. The physical effects associated with Chelyabinsk meteorite’s passage. Problems of Atomic Science and Technology, v.86, n.4, p.136-139, 2013.
CHERNOGOR, L.F. Basic effects of Chelyabinsk meteoroid fall: the results of physical-mathematic simulation. Proc. of All-Russian Sci. Conf. on Chelyabinsk meteorite – a year at the Earth, 2014, Chelyabinsk, Russia. 2014, p.229-264.
CHERNOGOR, L.F. Physical effects of the Chelyabinsk meteorite passage. DAN Ukraine, n.10, p.97-104, 2013. URL: http://dspace.nbuv.gov.ua/handle/123456789/86192.
LAZORENKO, O.V.; CHERNOGOR, L.F. Superwideband Signals and Processes [in Russain]. Kharkiv: Karazin KhNU, 2009.
LAZORENKO, O.V.; CHERNOGOR, L.F. The system spectral analysis: Theoretical bases and practical applications. Radio Physics and Radio Astronomy, v.12, n.2, p.162-182, 2007. URL: http://rpra-journal.org.ua/index.php/ra/article/view/600.
Deutsche IMS-Stationen, http://www.bgr.bund.de/EN/Themen/Seismologie/Kernwaffenteststopp_en/%C3%9Cberwachungsnetz_en/Deutsche-IMS-Stationen/deutsche-ims-stationen_inhalt.html.
CANSI, Y. An automated seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett., v.22, n.9, p.1021-1024, 1995. DOI: http://doi.org/10.1029/95GL00468.
LAZORENKO, O.V. The use of atomic functions in the Choi-Williams analysis of ultrawideband signals. Radioelectron. Commun. Syst., v.52, n.8, p.397-404, 2009. DOI: http://dx.doi.org/10.3103/S0735272709080019.
PASECHNIK, I.P. Science proved: nuclear explosions can be detected no matter where it is made. Priroda, n.7, p.3-12, 1962.
GOLITSYN, G.S.; DOKUCHAEV, V.P. Irradiation of acoustic-gravitation waves in case of meteoroids movement in the atmosphere. Izv. AN SSSR, Fizika Atmosfery i Okeana, v.13, n.9, p.926-936, 1977.
GOSSARD, E.E.; HOOKE, W.H. Waves in the Atmosphere. Elsevier Sci. Ltd, 1975.
CHERNOGOR, L.F. Oscillations of geomagnetic field generated by passage of Vitim fireball from 24 of September, 2002. Geomagnetizm i Astronomiya, v.51, n.1, p.119-132, 2011.
CHERNOGOR, L.F. Physics and Ecology of Catastrophes [in Russian]. Kharkiv: Karazin KhNU, 2012.