The use of atomic functions in the Choi-Williams analysis of ultrawideband signals
DOI:
https://doi.org/10.3103/S0735272709080019Abstract
The atomic functions and the Kravchenko–Rvachev windows based on these functions are proposed as a tool in performing the Choi–Williams analysis of signals. A new class of nonlinear transforms (Choi–Williams–Rvachev transforms) has been considered. Advantages and disadvantages of such transforms are discussed. Possibilities of the Choi–Williams–Rvachev transforms are demonstrated using as an example the analysis of model ultrawideband signals.
References
L. F. Chernogor, V. F. Kravchenko, and O. V. Lazorenko, “Ultrawideband signals: theory, simulation and digital processing,” In Proc. Ultrawideband and Ultrashort Impulse Signals, 19–22 September 2006, Sevastopol, Ukraine (Sevastopol, 2006).
L. Yu. Astanin and A. A. Kostylev, Principles of Ultrawideband Radar Measurements (Radio i Svyaz’, Moscow, 1989) [in Russian].
A. S. Dmitriev, L. V. Kuz’min, A. I. Panas, et al., “Direct Chaotic Communications Systems,” Uspekhi Sovremennoi Elektroniki, No. 9, 40 (2003).
O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Wavelet analysis of nonlinear wave processes,” Uspekhi Sovremennoi Elektroniki, No. 10, 3 (2005).
O. V. Lazorenko and L. F. Chernogor, “Fractal ultrawideband signals,” Radiofiz. Radioastron. 10, No. 1, 62 (2005).
O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Application of the wavelet analysis to problems of detecting ultrawideband signals against the background of interferences,” Radiofiz. Radioastron. 7, No. 1, 46 (2002).
O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Wavelet analysis of model ultrawideband signals,” Uspekhi Sovremennoi Elektroniki, No. 8, 47 (2006).
V. F. Kravchenko, O. V. Lazorenko, and L. F. Chernogor, “A new class of Kravchenko–Rvachev analytical wavelets in problems of the analysis of ultrawideband signals and processes,” Uspekhi Sovremennoi Elektroniki, No. 5, 29 (2007).
O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Application of the wavelet analysis to a problem of detecting the fast variable polarity ultrawideband processes,” Elektomagnitnye Volny i Elektronnye Sistemy 9, Nos. 9–10, 31 (2004).
O. V. Lazorenko, S. V. Panasenko, and L. F. Chernogor, “Adaptive Fourier Transform,” Elektomagnitnye Volny i Elektronnye Sistemy 10, No. 10, 39 (2005).
O. V. Vishnivetskii, V. F. Kravchenko, O. V. Lazorenko, and L. F. Chernogor, “The Wigner transform and atomic functions in the digital signal processing,” Elektomagnitnye Volny i Elektronnye Sistemy 11, No. 6, 26 (2006).
V. F. Kravchenko, O. V. Lazorenko, V. I. Pustovoit, and L. F. Chernogor, “The Choi–Williams transform and atomic functions in the digital signal processing,” DAN RAN 413, No. 6, 750 (2007).
O. V. Vishnivetskii, O. V. Lazorenko, and L. F. Chernogor, “The Choi–Williams analysis of signals,” Radiofiz. Radioastron. 12, No. 4, 410 (2007).
O. V. Lazorenko and L. F. Chernogor, “System spectral analysis of signals: theoretical principles and practical applications,” Radiofiz. Radioastron. 12, No. 2, 162 (2007).
V. F. Kravchenko and V. L. Rvachev, Algebra of Logic, Atomic Functions and Wavelets in Physical Applications (Fizmatlit, Moscow, 2006) [in Russian].
The Transforms and Applications Handbook, 2nd ed. (CRC Press LLC, Boca Raton, 2000) [ed. by A. D. Poularikas].
The Handbook of Formulas and Tables for Signal Processing (CRC Press LLC, Boca Raton, 1999) [ed. by A. D. Poularikas].
L. Kohen, “Time-frequency distributions: Overview,” TIIER 77, No. 16, 72 (1989).
F. Auger, P. Flandrin, P. Goncalves, and O. Lemoine, Time-Frequency Toolbox Reference Guide (Rice University, Houston, 2005).
V. F. Kravchenko, O. V. Lazorenko, V. I. Pustovoit, and L. F. Chernogor, “Wigner transformation in digital processing of signals,” DAN RAN 410, 38 (2006); Doklady Physics 51, No. 9, 461 (2006).
O. V. Vishnivetskii, O. V. Lazorenko, and L. F. Chernogor, “Analysis of nonlinear wave processes using the Wigner transform,” Radiofiz. Radioastron. 12, No. 3, 295 (2007).
H. J. Choi and W. J. Williams, “Improved Time-Frequency Representation of Multicomponent Signals Using Exponential Kernels,” IEEE Trans. Acoust., Speech, Signal Process. 37, No. 6, 862 (1989).
V. P. D’yakonov, MATLAB 6: Training Course (Piter, St. Petersburg, 2001) [in Russian].
S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998; Mir, Moscow, 2005).
V. L. Rvachev and V. A. Rvachev, Nonclassical methods of the approximation theory in boundary problems (Naukova Dumka, Kyiv, 1979) [in Russian].
V. L. Rvachev, The theory of R–functions and some of its applications (Naukova Dumka, Kyiv, 1982) [in Russian].
V. F. Kravchenko, V. A. Rvachev, and V. L. Rvachev, “Mathematical methods of signal processing based on atomic functions,” Radiotekh. Elektron. 40, No. 9, 1385 (1995).
V. F. Kravchenko and V. L. Rvachev, Algebra of Logic, Atomic Functions and Wavelets in Physical Applications (Fizmatlit, Moscow, 2006) [in Russian].
V. F. Kravchenko, Lectures on the Theory of Atomic Functions and Some of its Applications (Radiotekhnika, Moscow, 2003) [in Russian].
V. F. Kravchenko, O. V. Lazorenko, and V. I. Pustovoit, “Kravchenko–Wigner transformation in nonlinear digital signal processing,” DAN RAN 416, 754 (2007); Doklady Physics 52, No. 10, 544 (2007).
O. V. Lazorenko and L. F. Chernogor, “Ultrawideband physical processes and signals. 1. Main concepts, models and description methods,” Radiofiz. Radioastron. 13, No. 2, 166 (2008).