Multistage adaptive compensation of active noise interferences using block orthogonalization of signals of compensation channels

Authors

DOI:

https://doi.org/10.3103/S0735272717060012

Keywords:

Gram-Schmidt orthogonalization, computer simulation, automatic compensator, parallel-serial processing, RLS, LMS

Abstract

The multistage digital automatic compensators of active noise interferences have been synthesized using the block Gram-Schmidt orthogonalization and LS-algorithm based on the least squares criterion. The specified automatic compensators ensure parallel-serial processing of signals. The application of RLS-algorithm made it possible to obtain a recurrent procedure for calculation of weighting coefficients of automatic compensator modules represented in the form of multiinput weighting adders. Statistical computer simulation was used to analyze the multistage digital automatic compensators based on the RLS-algorithm with simultaneous adaptation of weighting adders of all stages. As a result of parallelization of computational process, the synthesized multistage automatic compensators made it possible to increase the speed of processing (signal sampling frequency) by one order of magnitude and more as compared to that of automatic compensators built on single-stage scheme.

Author Biography

Serhii Ya. Zhuk, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv

Ответственный секретарь

References

SHIRMAN, Y.D. (ed.), Radioelectronic Systems: Principles of Design and Theory. Reference Book [in Russian], 2nd ed. Moscow: Radiotekhnika, 2007.

BYSTROV, R.P.; NOVIKOV, A.V.; RUMYANTSEV, V.L. Enhancing the operating speed of spatial filtering of interferences in radars with APAA. Zhurnal Radioelektroniki, n.11, 2014, http://jre.cplire.ru/alt/nov14/11/text.html.

KUZ’MIN, S.Z. Digital Radiolocation [in Russian]. Kyiv: KViTs, 2000.

RATYNSKII, M.V. Adaptation and Superresolution in Antenna Arrays [in Russian]. Moscow: Radio i Svyaz’, 2003.

MONZINGO, R.A.; HAUPT, R.L.; MILLER, T.W. Introduction to Adaptive Arrays, 2nd ed. Scitech Pub. Inc., 2011.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; ATAMANSKIY, D.V. Adaptive lattice filters. Part I. Theory of lattice structures. Prikladnaya Radioelektronika, v.10, n.4, p.381-404, 2011.

GIRAUDON, S. US Patent 3876847, IPC 325/367, 8 April 1975.

LEKSACHENKO, V.A.; SHATALOV, A.A. Synthesis of multivariate “whitening” filter by using the Gram-Schmidt method. Radiotekh. Elektron., v.21, n.1, p.112-119, 1976.

POLOV, K.P. Adaptive compensator of interferences. Radiotekhnika, v.34, n.1, p.19-24, 1979.

BONDARENKO, B.F.; PROKOF’EV, V.P. The use of methods of functional analysis to solve problems of synthesizing space-time signal processing systems. Radioelectron. Commun. Syst., v.25, n.7, p.11-14, 1982.

COWAN, C.F.; GRANT, P.M. (eds.), Adaptive Filters. Prentice-Hall, 1985.

DJIGAN, V.I. Adaptive Filtering of Signals: Theory and Algorithms [in Russian]. Moscow: Tekhnosfera, 2013.

SEBER, G.A.F.; LEE, A.J. Linear Regression Analysis, 2nd ed. Wiley, 2003.

HOCKNEY, R.W.; JESSHOPE, C.R. Parallel Computers. Institute of Physics Publishing, 1983.

STRANG, G. Linear Algebra and its Applications, 4th ed. Cengage Learning, 2006.

ZHUK, S.Y.; SEMIBALAMUT, K.M. Two-stage adaptive compensation of active noise interferences with signals orthogonalization of a part of compensation channels. Visnyk NTUU KPI. Ser. Radiotekhnika. Radioaparatobuduvannya, n.64, p.61-74, 2016.

TIKHONOV, V.I.; KHARISOV, V.N. Statistical Analysis and Synthesis of Radio Devices and Systems [in Russian]. Moscow: Radio i Svyaz’, 1991.

LEKHOVYTSKIY, D.I.; RYABUKHA, V.P.; ZHUGA, G.A.; LAVRENT’EV, V.N. Experimental investigations of MTI (moving target indication) systems based on adaptive lattice filters in pulsed radars with burst vobbling of sweep periods. Prikladnaya Radioelektronika, v.7, n.1, p.90-101, 2008.

EFREMOV, V.S. Adaptive systems of selection of moving targets in air traffic control radars. Herald of the Bauman Moscow State Technical University. Ser. Priborostroenie, n.2, p.3-16, 2007, http://vestnikprib.ru/catalog/radoiel/hidden/274.html.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 1. Modifications of the spectral estimation algorithms. Radioelectron. Commun. Syst., v.58, n.12, p.523-550, 2015. DOI: http://dx.doi.org/10.20535/S0021347015120018.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 2. Extreme performance. Radioelectron. Commun. Syst., v.59, n.9, p.379-396, 2016. DOI: http://dx.doi.org/10.20535/S0021347016090016.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 3. Statistical analysis of the reconstruction techniques of continuous spectrums of the reflections from meteorological objects. Radioelectron. Commun. Syst., v.60, n.2, p.47-79, 2017. DOI: http://dx.doi.org/10.3103/S0735272717020017.

Published

2017-06-30

Issue

Section

Research Articles