Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 1. Modifications of the spectral estimation algorithms

Authors

DOI:

https://doi.org/10.3103/S0735272715120018

Keywords:

continuous energy spectrum of random processes, spectral function, spectral estimation methods, autoregressive model, meteorological object, Doppler weather radar, whitening filter

Abstract

This is the first paper in a series of papers devoted to the peculiarities of estimation of the continuous energy spectra of random processes of different nature, which are defined by their samples at discrete moments of time. In the paper we consider two kinds of the generalized spectrum analyzers (GSA), whose structure fits the majority of classical (nonparametric) and modern noneigenstructured spectral estimation (SE) methods. It has been demonstrated that a number of known superresolution SE methods may be considered as particular cases of parametric GSA based on whitening or inversing filters of the input process. We focus on the autoregressive models of analyzed processes with continuous energy spectrums, for which the whitening or inversing filters are the transversal filters of various structures with proper parameters. The utilized interpretation allows one to modify the well-known superresolution SE methods for the problem of continuous spectrums reconstruction and, what is more important, to establish their new varieties with practically useful properties, that are going to be explored in the following two papers.

In the article we used the following acronyms, abbreviations and mathematical notations:

  • MO — meteorological objects;
  • DWR — Doppler weather radar;
  • SE — spectral estimation;
  • GSA — generalized spectrum analyzer;
  • CM — correlation matrix;
  • GF — generating filter;
  • AR-p process — autoregressive process of the pth order;
  • AR MO — reflections from MO, that are approximated by the AR process;
  • LF — linear filter;
  • CC — correlation coefficient;
  • PR — pulse response of the linear filter;
  • HPD — Hermitian positive definite matrix;
  • LP, ME, MV, TN, BL, MCA — linear prediction method, Berg method of maximal entropy, Capon method of minimal variance, method of thermal noise, Borgiotti-Lagunas method, modified Capon algorithm [12, 13, 24], respectively;
  • ALF — adaptive lattice filter;
  • PFR — power frequency response, which is equal to the squared magnitude of frequency response (FR) of the linear filter;
  • FIC — the first integral criterion of resolution–reconstruction [30];
  • SIC — the second integral criterion of resolution–reconstruction [51];
  • x(f) — M-dimensional vector of equally spaced time samples of complex harmonic with normalized Doppler frequency  or the scanning (searching) vector;
  • SF — spectral function;
  • MPR — matrix pulse response;
  • ELF — elementary lattice filter;
  • RC — resolution capability;
  • (T), ( ~ ), (*),() — the signs of transposition, complex conjugation, Hermitian conjugation and statistical averaging, respectively;
  • el(L)*  — lth row of the identity LxL matrix IL;
  • JMMxM  permutation matrix with units on the secondary diagonal;
  • p* and pN-dimensional row with elements pi and column with elements pi~;
  • Ф)  — estimation of  matrix Ф;
  • (A–1)T, (A–1)~, (A–1)* — the notations of transposed, complex conjugate and Hermitian conjugate inverse matrices.

Author Biographies

David I. Lekhovytskiy, Kvant Radar Systems Scientific Research Institute

(2015) Kharkiv National University of Radioelectronics

Andrii V. Semeniaka, Kvant Radar Systems Scientific Research Institute

(2015) Kharkiv National University of Radioelectronics

References

BAZLOVA, T.A.; BOCHARNIKOV, N.V.; BRYLEV, G.B.; ET AL. Meteorological Automated Radar Networks. St. Petersburg: Gidrometeoizdat, 2002 [in Russian, ed. by G. B. Brylev].

RYZHKOV, A.V. Characteristics of meteorological radar stations. Zarubezhnaya Radioelektronika, 1993, n.4, p.29-34.

MELNIKOV, V.M. Information processing in Doppler weather radars. Zarubezhnaya Radioelektronika, 1993, n.4, p.35-42.

WEBER, M.E. Advances in operational weather radar technology. Lincoln Laboratory J., 2006, v.16, n.1, p.9-29, https://www.ll.mit.edu/publications/journal/pdf/vol16_no1/16_1_2Weber.pdf.

DOVIAK, R.J.; ZRNIC, D.S. Doppler Radar and Weather Observations. Orlando: Academic Press, 1975.

ROBINSON, E.A. A historical perspective of spectrum estimation. Proc. IEEE, Sept. 1982, v.70, n.9, p.885-907, DOI: http://dx.doi.org/10.1109/PROC.1982.12423.

JENKINS, G.M.; WATTS, D.G. Spectral Analysis and Its Applications. San Francisco: Holden-Day, 1968.

BOX, G.; JENKINS, G.M. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, 1970.

YAGLOM, A.M. Correlation Theory of Stationary and Related Random Functions. New York: Springer-Verlag, 1987.

KARAVAYEV, V.V.; SAZONOV, V.V. Statistical Theory of Passive Location. Moscow: Radio i Svyaz’, 1987 [in Russian].

JAYNES, E.T. On the rationale of maximum-entropy methods. Proc. IEEE, Sept. 1982, v.70, n.9, p.939-952, DOI: http://dx.doi.org/10.1109/PROC.1982.12425.

MARPLE JR., S.L. Digital Spectral Analysis: with Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1987.

STOICA, P.; MOSES, R. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice-Hall, 1997.

KRIM, H.; VIBERG, M. Two decades of array signal processing research: the parametric approach. IEEE SP Magazine (Signal Processing), Jul. 1996, v.13, n.4, p.67-94, DOI: http://dx.doi.org/10.1109/79.526899.

SHIRMAN, Y.D.; MANZHOS, V.N.; LEKHOVYTSKIY, D.I. Certain stages of development and problems of theory and techniques of resolution of radar signals. Radiotekhnika, 1997, n.1, p.31-42.

Radioelectronic Systems: Design Foundations and Theory, 2nd ed. Moscow: Radiotekhnika, 2007 [in Russian, ed. by Ya. D. Shirman].

BURG, J.P. Maximum Entropy Spectral Analysis. Proc. of 37th Meeting of the Society of Exploration Geophysicists, October 1967, Oklahoma City, Oklahoma, USA. Oklahoma City, 1967.

CAPON, J. High resolution frequency-wavenumber spectrum analysis. Proc. IEEE, Aug. 1969, v.57, n.8, p.1408-1418, DOI: http://dx.doi.org/10.1109/PROC.1969.7278.

CAPON, J. Probability distributions for estimators of the frequency-wavenumber spectrum. Proc. IEEE, Oct. 1970, v.58, n.10, p.1785-1786, DOI: http://dx.doi.org/10.1109/PROC.1970.8014.

GABRIEL, W.F. Spectral analysis and adaptive array superresolution techniques. Proc. IEEE, June 1980, v.68, n.6, p.654-666, DOI: http://dx.doi.org/10.1109/PROC.1980.11719.

MUNIER, J.; DELISLE, G.Y. Spatial analysis in passive listening using adaptive techniques. Proc. IEEE, Nov. 1987, v.75, n.11, p.1458-1471, DOI: http://dx.doi.org/10.1109/PROC.1987.13908.

JOHNSON, D.H. The application of spectral estimation methods to bearing estimation problems. Proc. IEEE, Sept. 1982, v.70, n.9, p.1018-1028, DOI: http://dx.doi.org/10.1109/PROC.1982.12430.

CHEREMISIN, O.P. The efficiency of adaptive methods of interfering signals bearing. Radiotekh. Elektron., 1989, v.34, n.9, p.1850-1861.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G.; FLEKSER, P.M. Statistical analysis of ‘superresolution’ bearing methods of noise radiation sources in antenna arrays at finite size of training sample. Antennas, 2000, n.2, p.23-39.

LEKHOVYTSKIY, D.I.; FLEKSER, P.M. Statistical analysis of resolution capability of quasi-harmonic spectral estimation using Capon method. Proc. of Int. Sci. and Tech. Conf. on Modern Radiolocation, Kyiv, Ukraine. Kyiv, 1994, v.1, p.66-71.

LEKHOVYTSKIY, D.I.; MILOVANOV, S.B.; PISHCHUHIN, V.M.; FLEKSER, P.M. Modified Capon algorithm for the problems of harmonic spectral analysis of spatial-time random signals. Proc. of V All-Soviet Union School-Seminar on Designing of Automated Systems of Control and Management by Complex Objects, Oct. 1992, Tuapse, Crimea, Ukraine. 1992, p.705.

SHIRMAN, Y.D. Theory of detection of desired signal on the background of Gaussian noises and arbitrary number of disturbing signals with random amplitudes and initial phases. Radiotekh. Electron., 1959, v.4, n.12, p.1176-1192.

SHIRMAN, Y.D. Statistical analysis of optimal resolution. Radiotekh. Electron., 1961, v.6, n.8, p.1237-1246.

SHIRMAN, Y.D. Resolution and Compression of Signals. Moscow: Sov. Radio, 1974 [in Russian].

FRIEDLANDER, BENJAMIN; PORAT, B.A. A general lower bound for parametric spectrum estimation. IEEE Trans. Acoust., Speech, Signal Process., Aug. 1984, v.32, n.4, p.728-733, DOI: http://dx.doi.org/10.1109/TASSP.1984.1164392.

LEKHOVYTSKIY, D.I.; ZHUGA, G.A.; VOVSHYN, B.M.; LAVRUKEVICH, V.V. Meteorological information extraction based on spectral and correlation analysis of reflections in pulse Doppler weather radars. Prikladnaya Radioelektronika, 2007, v.6, n.4, p.491-510.

HAYKIN, SIMON; CURRIE, B.W.; KESLER, S.B. Maximum-entropy spectral analysis of radar clutter. Proc. IEEE, Sept. 1982, v.70, n.9, p.953-962, DOI: http://dx.doi.org/10.1109/PROC.1982.12426.

LEKHOVYTSKIY, D.I.; KIRILLOV, I.G. The simulation of clutters for pulse radars on the basis of processes of random order autoregression. Syst. Obrob. Inf., 2008, n.3, p.90-101.

TIKHONOV, V.I. Statistical Radio Engineering. Moscow: Radio i Svyaz’, 1966 [in Russian].

Problems of Statistical Theory of Radiolocation, Vol. 1. Moscow: Sov. Radio, 1963 [in Russian, ed. by G. P. Tartakovskiy].

DIAS, J.M.B.; LEITAO, J.M.N. Nonparametric estimation of mean velocity and spectral width in weather radar. Proc. of IEEE Int. Geoscience and Remote Sensing Symp. on Quantitative Remote Sensing for Science and Applications, IGARSS’95, 10–14 July 1995, Florence, Italy. IEEE, 1995, v.3, p.2121-2125, DOI: http://dx.doi.org/10.1109/IGARSS.1995.524125.

EFREMOV, V.; LAURUKEVICH, U.; VYLEGZHANIN, I.; VOVSHIN, B.; LEKHOVYTSKIY, D. Results of theoretical and experimental investigations of meteorological formations power spectrum using ‘superresolution’ methods. Proc. of Int. Radar Symp. IRS2009, 09-11 Sept. 2009, Hamburg, Germany. Hamburg, 2009, p.777-784.

BELLMAN, R. Introduction to Matrix Analysis. Society for Industrial and Applied Mathematics, 1970.

STRANG, G. Linear Algebra and Its Applications, 4th ed. Brooks Cole, 2006.

VOEVODIN, V.V.; KUZNETSOV, Y.A. Matrices and Calculations. Moscow: Nauka, 1984 [in Russian].

DYM, HARRY; GOHBERG, ISRAEL. Extensions of band matrices with band inverses. Linear Algebra Appl., Mar. 1981, v.36, p.1-24, DOI: http://dx.doi.org/10.1016/0024-3795(81)90215-9.

LEKHOVYTSKIY, D.I. Generalized Levinson algorithm and universal lattice filters. Radiophysics and Quantum Electronics, 1992, v.35, n.9, p.509-520, DOI: http://dx.doi.org/10.1007/BF01044971.

ABRAMOVICH, Y.I.; SPENCER, N.K.; TURLEY, M.D.E. Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models. IEEE Trans. Signal Process., Jun. 2007, v.55, n.6, p.2861-2876, DOI: http://dx.doi.org/10.1109/TSP.2007.893966.

LEKHOVYTSKIY, D.I.; MILOVANOV, S.B.; RAKOV, I.D.; SVERDLOV, B.G. Universal adaptive lattice filters. Adaptation for a given root of the estimating correlation matrix. Radiophysics and Quantum Electronics, 1992, v.35, n.11, p.621-636, DOI: http://dx.doi.org/10.1007/BF01046658.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G. Modifications of ‘superresolution’ analyzers of spatial-time spectrum of random signals based on whitening adaptive lattice filters. Antennas, 2000, v.2, p.40-54.

BURG, JOHN PARKER. The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics, Apr. 1972, v.37, p.375, DOI: http://dx.doi.org/10.1190/1.1440265.

GERSHMAN, A.B.; YERMOLAYEV, V.T. Connection of spectral estimations of maximal entropy and ‘thermal noise’. Radiotekhnika, 1988, n.9, p.39.

CHILDERS, D.G. Modern Spectral Analysis. New York: IEEE Press, 1978.

KAY, S.M.; MARPLE JR., S.L. Spectrum analysis—A modern perspective. Proc. IEEE, Nov. 1981, v.69, n.11, p.1380-1419, DOI: http://dx.doi.org/10.1109/PROC.1981.12184.

VAN DEN BOS, A. Alternative interpretation of maximum entropy spectral analysis. IEEE Trans. Inf. Theory, Jul. 1971, v.17, n.4, p.493-494, DOI: http://dx.doi.org/10.1109/TIT.1971.1054660.

RACHKOV, D.S.; LEKHOVYTSKIY, D.I.; SEMENIAKA, A.V.; ATAMANSKIY, D.V.; LAURUKEVICH, U.U.; PUSHKOV, A.A. Estimation of meteorological objects energy spectra in pulse Doppler weather radar. Proc. of Int. Radar Symp. IRS2013, 19-21 June 2013, Dresden, Germany. IEEE, 2013, v.2, p.811-817, INSPEC: 13711081.

RACHKOV, D.S.; SEMENIAKA, A.V.; LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V. Estimation of continuous energy spectra of random echoes in coherent pulse radar. Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT’2013, 16-20 Sept. 2013, Odessa, Ukraine. IEEE, 2013, p.319-322, DOI: http://dx.doi.org/10.1109/ICATT.2013.6650764.

ABRAMOWITZ, M.; STEGUN, I.A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1972.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; ATAMANSKIY, D.V. Parametric methods for spectrum estimation of reflections from meteorological formations. Syst. Obrob. Inf., 2011, n.5, p.67-78.

LEKHOVYTSKIY, DAVID I.; SHIFRIN, YAKOV S. Statistical analysis of ‘superresolving’ methods for direction-of-arrival estimation of noise radiation sources under finite size of training sample. Signal Processing, Dec. 2013, v.93, n.12, p.3382-3399, DOI: http://dx.doi.org/10.1016/j.sigpro.2013.03.008.

Published

2015-12-26

Issue

Section

Research Articles