Stealthiness of analytical chaotic signals
DOI:
https://doi.org/10.3103/S0735272717030050Keywords:
chaotic sequence, attractor, analytical chaotic signal, IID stealthiness, BDS statisticsAbstract
This paper considers an approach to constructing analytical chaotic sequences with statistical and dynamic characteristics that are close to the white noise characteristics. The notion of stealthiness and its measure were introduced for these sequences. Attractors of constructed sequences and their cross-correlation functions were studied. The results obtained in this paper can be used for enhancing the stealthiness of radio data transmission systems.References
KUVSHINOV, O.V.; VOZNYUK, R.M. Estimation of structural stealthiness of broadband signals. Zbirnyk Naukovykh Prats VITI NTUU KPІ, n.1, p.106-111, 2011, http://viti.edu.ua/files/zbk/2011/14_1_2011.pdf.
KANEVSKII, Z.M.; LITVINENKO, V.P.; MAKAROV, G.V.; ET AL. Stealth Theory Foundations: Textbook [in Russian]. VGU: Voronezh, 2006.
EISENCRAFT, MARCIO; ATTUX, ROMIS; SUYAMA, RICARDO (eds.). Chaotic Signals in Digital Communications. CRC Press, 2013.
KUPRIYANOV, A.I.; SAKHAROV, A.V. Theoretical Foundation of Electronic Warfare: Textbook [in Russian]. Moscow: Vuzovskaya Kniga, 2007.
KORONOVSKII, ALEKSEI A.; MOSKALENKO, OLGA I.; HRAMOV, ALEKSANDR E. On the use of chaotic synchronization for secure communication. Phys. Usp., v.52, p.1213, 2009. DOI: https://doi.org/10.3367/UFNe.0179.200912c.1281.
ZAKHARCHENKO, N.V.; HOROKHOV, S.M.; KORCHYNSKII, V.V.; RADZYMOVSKII, B.K. Stealth of transmission in communication systems with chaotic signals. Measuring and Computing Devices in Technological Processes, n.3, p.41-45, 2013, http://journals.khnu.km.ua/vottp/pdf/2013_3/32.pdf.
KOSTENKO, P.Y.; VASIUTA, K.S.; SYMONENKO, S.N.; BARSUKOV, A.N. Nonparametric BDS detector of chaotic signals against the background of white noise. Radioelectron. Commun. Syst., v.54, n.1, p.19-25, 2011. DOI: http://dx.doi.org/10.3103/S0735272711010031.
KOSTENKO, P.Y.; SYMONENKO, S.N.; BARSUKOV, A.N.; ANTONOV, A.V. Estimation of structural stealthiness of chaotic signals. Radioelectron. Commun. Syst., v.55, n.11, p.475-481, 2012. DOI: http://dx.doi.org/10.3103/S0735272712110015.
FAL’KOVICH, S.E.; KOSTENKO, P.Y. Foundations of the Statistical Theory of Radio Systems. Textbook [in Russian]. Kharkov: NAU “KhAI”, 2005.
KOSTENKO, P.Y.; VASIUTA, K.S.; STOROGEV, V.I.; OLEINIK, S.A. Dynamic and statistical characteristics of chaotic sequences subjected to linear transformations. Radioelectron. Commun. Syst., v.49, n.7, p.21-27, 2006, http://radioelektronika.org/article/view/S0735272706070041.
KOSTENKO, P.Y.; VASIUTA, K.S.; SYMONENKO, S.N. Improving communication security by complicating chaotic process attractor using linear transform with Mandelbrot kernel. Radioelectron. Commun. Syst., v.53, n.12, p.636-643, 2010. DOI: http://dx.doi.org/10.3103/S0735272710120022.
KOSTENKO, P.Y.; SYMONENKO, S.N.; BARSUKOV, A.N.; VASIUTA, K.S. Use of BDS statistic to estimate security of a signal obtained by mixing chaotic carrier. Radioelectron. Commun. Syst., v.53, n.5, p.261-264, 2010. DOI: http://dx.doi.org/10.3103/S0735272710050055.
KORCHINSKY, V.V. Evaluation of structural stealth signal designs based on chaotic signals in the transmission systems of confidential information. Naukovi pratsi ONAZ im. O. S. Popova, n.2, p.77-81, 2012, http://sbornik.onat.edu.ua/ua/metod/download/350/ua.
KIPCHATOV, A.A.; KOZLENKO, E.L. Unbounded increase in the dimension of chaotic attractors in linear filtering. Tech. Phys. Lett., v.23, n.4, p.254-256, 1997. DOI: http://doi.org/10.1134/1.1261832.
KIPCHATOV, A.A.; KOZLENKO, E.L. Reconstruction of chaotic oscillations after passage through linear filters. Tech. Phys. Lett., v.25, n.2, p.148-150, 1999. DOI: http://doi.org/10.1134/1.1262382.