Improving communication security by complicating chaotic process attractor using linear transform with Mandelbrot kernel

Authors

DOI:

https://doi.org/10.3103/S0735272710120022

Keywords:

reserve of a signal, chaotic process, linear transformation, kernel Мandelbrot, BDS statistic

Abstract

Study results of dynamic and static characteristics of linearly transformed chaotic sequence are provided. Mandelbrot kernel values obtained when converting white Gaussian noise into fractal (colored) noise are used as the transform's weight coefficients. Evolution of distribution density of generating chaotic sequence and its complication by attractors due to linear transform is shown. Numerical security analysis of the transformed chaotic sequence on transformation kernel parameters is conducted.

References

А. S. Dmitiriyev, А. V. Kletsov, А.М. Laktiushin, et al., “Ultra-wideband wireless communications on the dynamic chaos ground,” Radiotekh. Elektron. 51, No. 10, 1193 (2006).

E. V. Kalianov, “Stealth information transmission using retarding for extracting useful signal from masking oscillations,” Pisma v ZhTF 35, No. 6, 56 (2009).

P. Yu. Kostenko, A. N. Barsukov and S. N. Symonenko, “Sensitivity to parameter variations of the regularized recovery algorithm of binary message masked by chaotic process,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 51(8), 51 (2008) [Radioelectron. Commun. Syst. 51(8), 441 (2008)].

P. Yu. Kostenko, A. N. Barsukov, K. S. Vasiuta, and S. N. Symonenko, “Detection of the Chaotic Process Distorted by the White Noise Using BDS Statistics,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 52(11), 41 (2009) [Radioelectron. Commun. Syst. 52(11), 599 (2009)].

P. Yu. Kostenko, A. N. Barsukov, A. V. Antonov and K. S. Vasiuta, “Control noise-proof recorery of binary information, masked by chaotic oscillation of system with delay,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 51(2), 58 (2008) [Radioelectron. Commun. Syst. 51(2), 97 (2008)].

S. Ye. Fal’kovich, P. Yu. Kostenko, Basics of Statistical Theory of Radio Engineering Systems: Handbook (NAU KhAI, Kharkov, 2005) [in Russian].

А. А. Kipchatov and Ye. N. Kozlenko, “Unbounded dimensionality increase of chaotic attractors during linear filtering,” Pisma v ZhTF 23, No. 7, 8 (1997).

P. Yu. Kostenko, K. S. Vasiuta, V. I. Storozhev, and S. A. Oleinik, “Dynamic and Statistical Characteristics of Chaotic Sequences Subjected to Linear Transformations,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 49(7), 32 (2006); Radioelectron. Commun. Syst. 49(7), 25 (2006)].

J. Feder, Fractals (Plenum Press, NewYork, 1988; Mir, Moscow, 1991).

G. I. Tuzov, V. А. Sivov, V. I. Prytkov, et al., Security of Radio Systems with Complex Signals (Radio i Svyaz’, Moscow, 1985) [in Russian].

W. A. Brock, W. D. Dechert, and J. A. Scheinkman, “A test for independence based on the correlation dimension,” in Working Paper No. 8702. Department of Economics, University of Wisconsin (1987).

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. (Cambridge University Press, Cambridge, 2004).

L. Kanzler, Very Fast and Correctly Sized Estimation of the BDS Statistic (Christ Church and Department of Economics University of Oxford, Oxford, 1999).

Published

2010-12-02

Issue

Section

Research Articles