Signal processing correction in spectral analysis using the surrogate autocovariance observation functions obtained by the ATS-algorithm
DOI:
https://doi.org/10.3103/S0735272714060016Keywords:
surrogate data, eigenstructure methods, correction, autocovariance function, ATS algorithm, attractor trajectory surrogates algorithmAbstract
The problem of processing correction of signals observed against the background of noise has been considered in relation to their spectral analysis by the Root-MUSIC method using the technology of surrogate autocovariance functions (ACF) of observation. The results of simulation modeling are presented dealing with the correction of observation processing by means of the phase randomization of spectral components of observation ACF using the ATS-algorithm for generating the observation surrogate ACF. It has been shown that in generating surrogate data from the observation ACF, ATS-algorithm ensures the highest efficiency at small signal-to-noise ratios.
References
EFRON, B. Nonconventional Methods of Multivariate Statistical Analysis. Moscow: Finansy i Statistika, 1988 [in Russian, translation from English of articles collection], 263 p.
ORLOV, A.I. Econometrics. Moscow: Ekzamen, 2002 [in Russian], 576 p.
SHITIKOV, V.K.; ROZENBERG, G.S. Randomization, Bootstrap, and Monte-Carlo Methods. Examples of the Statistical Analysis of Data in the Field of Biology and Ecology. Tolyatti, 2012 [in Russian], 76 p.
ZOUBIR, A.M.; BOASHASH, B. The bootstrap: signal processing applications. IEEE SP Magazine (Signal Processing), v.15, p.56-76, 1998.
GERSHMAN, A.B.; BOHME, J.F. A pseudo-noise approach to direction finding. Signal Processing, v.71, p.1-13, May 1998.
VASYLYSHYN, VOLODYMYR. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer. Signal Processing, v.93, n.12, p.3423-3429, 2013. PII: S016516841300217X.
THEILER, JAMES S.; EUBANK, STEPHEN; LONGTIN, ANDRE; GALDRIKIAN, BRYAN; FARMER, J. DOYNE. Testing for nonlinearity in time series: the method of surrogate data. Physica D, v.58, n.1-4, p.77-94, Sept. 1992. PII: 016727899290102S.
SMALL, M. Applied Nonlinear Time Series Analysis Applications in Physics, Physiology and Finance. Singapore: World Scientific Publishing Co. Pte. Ltd., 2005, 245 p.
MARPLE, S.L., Jr. Digital Spectral Analysis with Applications. New Jersey: Prentice-Hall, 1987.
STOICA, P.; MOSES, R.L. Introduction to Spectral Analysis. Prentice-Hall, 1997.
GERSHMAN, ALEX B. Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding. IEEE Trans. Signal Process., v.46, n.5, p.1351-1364, May 1998. DOI: http://dx.doi.org/10.1109/78.668797.
VASYLYSHYN, V.I. Direction finding with superresolution using root implementation of eigenstructure techniques and joint estimation strategy. Proc. of European Conf. on Wireless Technology, 11–12 Oct. 2004, Amsterdam, Netherlands. Amsterdam, 2004, p.101-104.
Kostenko, P.Y.; Vasylyshyn, V.I. Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data. Radioelectron. Commun. Syst., v.57, n.1, p.31-38, 2014, http://radioelektronika.org/article/view/S0735272714010026, DOI: http://dx.doi.org/10.3103/S0735272714010026.
KOSTENKO, P.Y.; VASIUTA, K.S.; SYMONENKO, S.N.; BARSUKOV, A.N. Nonparametric BDS detector of chaotic signals against the background of white noise. Radioelectron. Commun. Syst., v.54, n.1, p.19-25, 2011, http://radioelektronika.org/article/view/S0735272711010031, DOI: http://dx.doi.org/10.3103/S0735272711010031.
KOSTENKO, P.Y.; VASIUTA, K.S.; SLOBODYANYUK, V.V.; YAKOVENKO, D.S. The use of surrogate signals for enhancing the estimation quality of parameters of regular and chaotic signals observed against the background of additive noise. Systems of Control, Navigation and Communications, n.416, p.28-32, 2010.
KOSTENKO, P.Y.; VASYLYSHYN, V.I.; SYMONENKO, S.N.; VYSOTSKII, O.V.; YAKOVENKO, D.S. Enhancing the efficiency of coherent processing of chaotic signals during the transmission of binary messages using surrogate signals. Radioelectron. Commun. Syst., v.55, n.7, p.307-314, 2012, http://radioelektronika.org/article/view/S0735272712070035, DOI: http://dx.doi.org/10.3103/S0735272712070035.
STOICA, PETRE; ERIKSSON, ANDERS. MUSIC estimation of real-valued sine-wave frequencies. Signal Processing, v.42, n.2, p.139-146, Mar. 1995. PII: 016516849400123H.
TAKENS, FLORIS. Detecting strange attractors in turbulence. Lect. Notes Math., v.898, p.366-381, 1981. DOI: http://dx.doi.org/10.1007/BFb0091924.
LUO, XIAODONG; NAKAMURA, TOMOMICHI; SMALL, MICHAEL. Surrogate data method applied to nonlinear time series. Actas Primer Encountro Sobre Analisis No Lineal De Series Temporales, ed. Grupo de Investigacion Interdisciplinar en Sistemas Dinamicos, Reproducciones Graficas Albacete, 2007, p.1-16.
MALINETSKII, G.G.; POTAPOV, A.B. Modern Problems of Nonlinear Dynamics. Moscow: Editorial UkrRSS, 2000 [in Russian], 336 p.