Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data

Authors

DOI:

https://doi.org/10.3103/S0735272714010026

Keywords:

surrogate data, eigenstructure methods, bootstrap, signal-to-noise ratio, randomization

Abstract

A problem of enhancing the efficiency of spectral analysis of signals observed against the background of noise by using the Root-MUSIC method and the technology of surrogate data obtained by the randomization of phases of spectral components of observations has been considered. The results of spectral analysis simulation are presented. The application of this technology was shown to be effective at small and large values of the signal-to-noise ratio when the frequencies of signal components are a multiple of the observation sampling frequency.

References

EFRON, B. Nonconventional Methods of Multivariate Statistical Analysis. Moscow: Finansy i Statistika, 1988 [in Russian]. 263 p.

ORLOV, A.I. Econometrics. Moscow: Ekzamen, 2002 [in Russian]. 576 p.

SHITIKOV, V.K. AND ROZENBERG, G.S. Randomization, Bootstrap, and Monte-Carlo Methods. Examples of the Statistical Analysis of Data in Biology and Ecology. Tolyatti, 2012 [in Russian]. 76 p.

ZOUBIR, A.M. AND BOASHASH, B. The bootstrap: Signal processing applications. IEEE SP Magazine (Signal Processing), v.15, p.56-76, 1998.

GERSHMAN, A.B. AND BOHME, J.F. A pseudo-noise approach to direction finding. Signal Processing, v.71, n.5, p.1-13, May 1998.

VASYLYSHYN, V.I. Improved beamspace ESPRIT-based DOA estimation via pseudo-noise resampling. Proc. of European Radar Conf., Amsterdam, Netherlands. Amsterdam, 2012, p. 238-241.

VASYLYSHYN, V. Removing the outliers in Root-MUSIC via pseudo-noise resampling and conventional beamformer. Signal Processing, v.93, n.12, p.3423-3429, 2013.

THEILER, J.S.; EUBANK, S.; LONGTIN, A.; GALDRIKIAN, B.; FARMER, J.D. Testing for nonlinearity in time series: The method of surrogate data. Physica D, v.58, n.1-4, p.77-94, Sept. 1992. PII: S016516841300217X.

SMALL, M. Applied Nonlinear Time Series Analysis Applications in Physics, Physiology and Finance. World Scientific Publishing Co. Pte. Ltd., 2005. 245 p.

KOSTENKO, P.Y.; VASIUTA, K.S.; SYMONENKO, S.N.; BARSUKOV, A.N. Nonparametric BDS detector of chaotic signals against the background of white noise. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.54, n.1, p.23-31, 2011 [in Russian]. Radioelectron. Commun. Syst., v.54, n.1, p.19-25, 2011. doi: 10.3103/S0735272711010031.

KOSTENKO, P.Y.; VASIUTA, K.S.; SLOBODYANYUK, V.V.; YAKOVENKO, D.S. The use of surrogate signals for enhancing the estimation quality of parameters of regular and chaotic signals observed against the background of additive noise. Systems of Control, Navigation and Communications, n.4, p.28-32, 2010.

KOSTENKO, P.Y.; VASYLYSHYN, V.I.; SYMONENKO, S.N.; VYSOTSKII, O.V.; YAKOVENKO, D.S. Enhancing the efficiency of coherent processing of chaotic signals during the transmission of binary messages using surrogate signals. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.7, p.24-33, 2012 [in Russian]. Radioelectron. Commun. Syst., v.55, n.7, p.307-314, 2012. doi: 10.3103/S0735272712070035.

MARPLE, S.L., Jr. Digital Spectral Analysis with Applications. New Jersey: Prentice Hall, 1987. 584 p.

STOICA, P. AND MOSES, R.L. Introduction to Spectral Analysis. Prentice Hall, 1997.

SHIRMAN, Y.D. Resolution and Compression of Signals. Moscow: Sov. Radio, 1974 [in Russian].

JONSON, D.H. The application of spectral estimation methods to bearing estimation problems. Proc. IEEE, v.70, n.9, p.1018-1028, Sept. 1982. doi: 10.1109/PROC.1982.12430.

GERSHMAN, A.B.; BOHME, Johann F. Improved DOA estimation via pseudorandom resampling of spatial spectrum. IEEE Signal Process. Lett., v.4, n.2, p.54-57, Feb. 1997. doi: 10.1109/97.554472.

GERSHMAN, ALEX B. Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding. IEEE Trans. Signal Process., v.46, n.5, p.1351-1364, May 1998. doi: 10.1109/78.668797.

VASYLYSHYN, V.I. Direction finding with superresolution using root implementation of eigenstructure techniques and joint estimation strategy. Proc. of European Conf. on Wireless Technology, 11–12 Oct. 2004, Amsterdam, Netherlands. Amsterdam, 2004, p.101-104.

STOICA, PETRE; ERIKSSON, ANDERS. MUSIC estimation of real-valued sine-wave frequencies. Signal Processing, v.42, n.2, p.139-146, Mar. 1995. PII: 016516849400123H.

Published

2014-01-20

Issue

Section

Research Articles