DOI: https://doi.org/10.3103/S0735272719040058
Open Access Open Access  Restricted Access Subscription Access
Copper modified bow-tie antenna on FR4 substrate

Effect of copper and graphene material on bow-tie structured antenna for 1.2 GHz application

Ram M. E. Prasanna, N. M. Masoodhu Banu

Abstract


In this paper the effect of copper and graphene conductive ink material on antenna performance is compared. The patch structures are simulated using HFSS software. The designed antenna is resonating around 1.2 GHz giving reflection coefficient below –10 dB. The simulated and fabricated modified bow-tie antenna design have impedance bandwidth of 15 (simulated), 12 (copper), and 13.5 MHz (graphene), respectively, which are suitable for LTE (QUALCOMM), WiMAX, Wi-Fi applications. This modified design consists of various types of slots introduced at various places of bow-tie arm in order to get desired bandwidth and for the improvement in antenna performance parameters. This proposed antenna will work in UHF (Ultra High Frequency) band at 1.2 GHz. Compare to conventional bow-tie antenna this modified design will give better antenna performance parameters. In this work we have compared various performance parameters like return loss, VSWR and bandwidth for each design. These parameters have been validated for proposed model for resonating frequency.

Keywords


bow-tie; modified bow-tie antenna; microstrip patch; UHF; ultra high frequency band; slot; bandwidth

Full Text:

PDF

References


“Biconical antenna,” Wikipedia. URI: https://en.wikipedia.org/wiki/Biconical_antenna.

BHOSALE, A.C.; DESHMUKH, V.U. “Design of bow-tie microstrip antenna with fractal shape for W-LAN application,” IJECT, v.3, n.4, 2012. URI: http://www.iject.org/vol34/3/amol.pdf.

RAHIM, M.K.A.; ABDUL AZIZ, M.Z.A.; GOH, C.S. “Bow-tie microstrip antenna design,” Proc. of 13th IEEE Int. Conf. on Networks Jointly held with the 2005 IEEE 7th Malaysia Int. Conf. on Communic., 16-18 Nov. 2005, Kuala Lumpur, Malaysia. IEEE, 2005. DOI: https://doi.org/10.1109/ICON.2005.1635425.

SINGH, Sukhdeep; GUPTA, Vikas; KUMAR, Avish. “A review of bow tie antenna and microstrip patch antenna,” Int. J. Eng. Res. Tech., v.3, n.5, 2014. URI: https://www.ijert.org/research/a-review-of-bow-tie-antenna-and-microstrip-patch-antenna-IJERTV3IS050786.pdf.

SHAFIEI, M.M.; MOGHAVVEMI, Mahmoud; WAN MAHADI, Wan Nor Liza. “The parametric study and fine-tuning of bow-tie slot antenna with loaded stub,” PLoS One, v.12, n.1, p.e0169033, 2017. DOI: https://doi.org/10.1371/journal.pone.0169033.

HAQUE, Ahasanul; REZA, Ahmed Wasif; KUMAR, Narendra; RAMIAH, Harikrishnan. “Slotting effect in designing circular edge bow-tie nano antenna for energy harvesting,” Proc. of IEEE Conf. on Open Systems, 24-26 Aug. 2015, Bandar Melaka, Malaysia. IEEE, 2015. DOI: https://doi.org/10.1109/icos.2015.7377276.

KAUR, Preet; AGGARWAL, S.K.; DE, Asok. “Performance enhancement of rectangular microstrip patch antenna using double H shaped metamaterial,” Radioelectron. Commun. Syst., Vol. 59, No. 11, p. 496-501, 2016. DOI: https://doi.org/10.3103/S0735272716110030.

INAMDAR, Kirti; KOSTA, Y.P.; PATNAIK, S.S. “Criss-cross metamaterial-substrate microstrip antenna with enhanced gain and bandwidth,” Radioelectron. Commun. Syst., Vol. 58, No. 2, p. 69-74, 2015. DOI: https://doi.org/10.3103/S073527271502003X.

DAWAR, Parul; DE, Asok; RAGHAVA, N.S. “S-shaped metamaterial ultra-wideband directive patch antenna,” Radioelectron. Commun. Syst., Vol. 61, No. 9, p. 394-405, 2018. DOI: https://doi.org/10.3103/S0735272718090029.

CHEN, Y.-L.; RUAN, C.-L.; PENG, L. “A novel ultra-wideband bow-tie slot antenna in wireless communication systems,” PIER Lett., v.1, p.101, 2008. DOI: https://doi.org/10.2528/pierl07112302.

XU, Lina; LI, Li; ZHANG, Wenmei. “Study and design of broadband bow-tie slot antenna fed with asymmetric CPW,” IEEE Trans. Antennas Propag., v.63, n.2, p.760, 2015. DOI: https://doi.org/10.1109/tap.2014.2378265.

KUNDU, Twinkle; PARKASH, Davinder. “A triangular patch antenna for UHF band with microstrip feed line for RFID applications,” Int. J. Eng. Res. Tech., v.1, n.8, 2012. URI: https://www.ijert.org/research/a-triangular-patch-antenna-for-uhf-band-with-microstrip-feed-line-for-rfid-applications-IJERTV1IS8249.pdf.

LI, Biao; YIN, Ying-Zeng; HU, Wei; DING, Yang; ZHAO, Yang. “Wideband dual-polarized patch antenna with low cross polarization and high isolation,” IEEE Antennas Wireless Propag. Lett., v.11, p.427, 2012. DOI: https://doi.org/10.1109/lawp.2012.2195149.

TAWK, Y.; KABALAN, K.Y.; EL-HAJJ, A.; CHRISTODOULOU, C.G.; COSTANTINE, J. “A simple multiband printed bowtie antenna,” IEEE Antennas Wireless Propag. Lett., v.7, p.557, 2008. DOI: https://doi.org/10.1109/lawp.2008.2001027.

FENG, Guirong; CHEN, Lei; WANG, Xinwei; XUE, Xingsi; SHI, Xiaowei. “Broadband circularly polarized crossed bowtie dipole antenna loaded with parasitic elements,” IEEE Antennas Wireless Propag. Lett., v.17, n.1, p.114, 2018. DOI: https://doi.org/10.1109/lawp.2017.2777442.

WU, Ming-Tien; CHUANG, Ming-Lin. “Multibroadband slotted bow-tie monopole antenna,” IEEE Antennas Wireless Propag. Lett., v.14, p.887, 2015. DOI: https://doi.org/10.1109/lawp.2014.2383441.







© Radioelectronics and Communications Systems, 2004–2019
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41