70-110 GHz on-wafer probe station S-parameters measurements of planar multenna
DOI:
https://doi.org/10.3103/S0735272721060029Abstract
This paper presents S11 measurements of a flat, slotted, sub-mm sized antenna, integrated with a Schottky diode; the overall structure being termed a ‘multenna’ in description of its action to radiate a signal beam field that is a higher order harmonic of the signal beam field it receives. The multenna is constituted of two square slots; one tuned to receive at the frequency of 100 GHz and the other to radiate at 300 GHz. The S11 readings are acquired using a cascade probe station driven by a Vector Network Analyzer (VNA). The investigated frequency domain of this study is 70–110 GHz (WR-10 waveguide band). Simulation results agree in key features with measurements over the band, thereby verifying the measurement procedure and validating the use of a lumped-element approach to represent the diode impedance.
References
P. T. Dat, A. Kanno, N. Yamamoto, T. Kawanishi, “Performance evaluation of full-duplex MIMO seamless fiber-wireless system in W-band,” IEEE Photonics Technol. Lett., vol. 30, no. 13, pp. 1175–1178, 2018, doi: https://doi.org/10.1109/LPT.2018.2837146.
S. B. Yeap, X. Qing, Z. N. Chen, “77-GHz dual-layer transmit-array for automotive radar applications,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2833–2837, 2015, doi: https://doi.org/10.1109/TAP.2015.2419691.
L. Yujiri, M. Shoucri, P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag., vol. 4, no. 3, pp. 39–50, 2003, doi: https://doi.org/10.1109/MMW.2003.1237476.
K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 169–182, 2011, doi: https://doi.org/10.1109/TTHZ.2011.2159556.
W. Hong, K.-H. Baek, S. Ko, “Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6250–6261, 2017, doi: https://doi.org/10.1109/TAP.2017.2740963.
R. Prasad, “Overview of wireless personal communications: microwave perspectives,” IEEE Commun. Mag., vol. 35, no. 4, pp. 104–108, 1997, doi: https://doi.org/10.1109/35.570728.
K. Wu, “Towards system-on-substrate approach for future millimeter-wave and photonic wireless applications,” in 2006 Asia-Pacific Microwave Conference, 2006, pp. 1895–1900, doi: https://doi.org/10.1109/APMC.2006.4429778.
R. N. Simons, R. Q. Lee, “On-wafer characterization of millimeter-wave antennas for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92–96, 1999, doi: https://doi.org/10.1109/22.740086.
Z.-M. Tsai, Y.-C. Wu, S.-Y. Chen, T. Lee, H. Wang, “A V-band on-wafer near-field antenna measurement system using an IC probe station,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 2058–2067, 2013, doi: https://doi.org/10.1109/TAP.2012.2237091.
A. Lord, “Advancements in MM-wave on-wafer S-parameter verification,” in IET Seminar on MM-Wave Products and Technologies, 2006, vol. 2006, pp. 87–91, doi: https://doi.org/10.1049/ic:20060116.
A. C. F. Reniers, A. R. van Dommele, A. B. Smolders, M. H. A. J. Herben, “The influence of the probe connection on mm-wave antenna measurements,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3819–3825, 2015, doi: https://doi.org/10.1109/TAP.2015.2452941.
M. Fakharzadeh, “Antenna measurement in probe station,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014, pp. 293–294, doi: https://doi.org/10.1109/APS.2014.6904478.
A. El Fellahi et al., “Nanorobotic RF probe station for calibrated on-wafer measurements,” in 2015 European Microwave Conference (EuMC), 2015, pp. 163–166, doi: https://doi.org/10.1109/EuMC.2015.7345725.
A. Suziedelis et al., “Investigation of microwave properties of planar heterojunction diodes in Ka frequency range using probe station,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 3899–3903, doi: https://doi.org/10.1109/PIERS.2016.7735466.
Z. D. Schwartz, A. N. Downey, S. A. Alterovitz, G. E. Ponchak, “High-temperature RF probe station for device characterization through 500/spl deg/C and 50 GHz,” IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 369–376, 2005, doi: https://doi.org/10.1109/TIM.2004.838137.
A. El Fellahi et al., “On-wafer probe station for microwave metrology at the nanoscale,” in 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015, pp. 1960–1964, doi: https://doi.org/10.1109/I2MTC.2015.7151582.
S. Beer, T. Zwick, “Probe based radiation pattern measurements for highly integrated millimeter-wave antennas,” in Proceedings of the Fourth European Conference on Antennas and Propagation, 2010, uri: https://ieeexplore.ieee.org/document/5505042.
S. Cheng, H. Yousef, H. Kratz, “79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 64–71, 2009, doi: https://doi.org/10.1109/TAP.2008.2009708.
K. Van Caekenberghe et al., “A 2-40 GHz probe station based setup for on-wafer antenna measurements,” IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3241–3247, 2008, doi: https://doi.org/10.1109/TAP.2008.929433.
W. Lee, J. Kim, C. S. Cho, Y. J. Yoon, “Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 706–713, 2010, doi: https://doi.org/10.1109/TAP.2009.2039331.
R. N. Simons, “Novel On-Wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas,” 2002. uri: https://ntrs.nasa.gov/citations/20020090930.
T. Zwick, C. Baks, U. R. Pfeiffer, D. Liu, B. P. Gaucher, “Probe based MMW antenna measurement setup,” in IEEE Antennas and Propagation Society Symposium, 2004., 2004, pp. 747-750 Vol.1, doi: https://doi.org/10.1109/APS.2004.1329778.
J. Ala-Laurinaho, Z. Du, V. Semkin, V. Viikari, A. V. Raisanen, “Reflection coefficient method for antenna radiation pattern measurements,” in 2015 European Radar Conference (EuRAD), 2015, pp. 285–288, doi: https://doi.org/10.1109/EuRAD.2015.7346293.
M. Pigeon et al., “From simulations to measurements: prototyping an antenna for non‐linear applications at sub‐THz frequencies,” IET Microwaves, Antennas Propag., vol. 11, no. 3, pp. 304–309, 2017, doi: https://doi.org/10.1049/iet-map.2016.0392.
R. Dubrovka et al., “Measurements of non-linear sub-THz quasi-optical devices,” in 2017 11th International Conference on Antenna Theory and Techniques, ICATT 2017, 2017, pp. 9–13, doi: https://doi.org/10.1109/ICATT.2017.7972576.
A. S. Andy et al., “Characterisation of a quasi-optical transmissometer for precise measurement of a Sub-THz multenna,” in IET Conference Publications, 2017, vol. 2017, no. CP732, doi: https://doi.org/10.1049/cp.2017.0284.
O. Sushko et al., “Investigation of frequency-tripling performance of Schottky diode based multennas to 0.3 THz,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016, vol. 2016-Novem, pp. 1–2, doi: https://doi.org/10.1109/IRMMW-THz.2016.7758977.