Relationship of signal and noise characteristics of autodynes with frequency modulation as function of distance to location object

Authors

  • Vladislav Ya. Noskov Ural Federal University, Yekaterinburg, Russian Federation https://orcid.org/0000-0003-2434-1742
  • Gennadiy P. Ermak O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
  • Aleksandr S. Vasiliev O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
  • Kirill A. Ignatkov Ural Federal University, Yekaterinburg, Russian Federation https://orcid.org/0000-0001-6411-9287
  • Kirill D. Shaidurov Ural Federal University, Yekaterinburg, Russian Federation https://orcid.org/0000-0001-7431-860X

DOI:

https://doi.org/10.3103/S0735272721040051

Keywords:

autodyne, frequency modulation, FM, autodyne short-range radiolocation system, SRRLS with FM, noise characteristics, Gunn diode generator

Abstract

The paper presents the results of analysis of signal and noise characteristics of autodynes with frequency modulation. The mathematical model of autodyne is presented in the form of a self-oscillator with single-loop oscillation system that is frequency-tuned using the varicap. This model takes into account the impact of intrinsic radiation reflected from location object and the impact of generator internal noises on the oscillator. The paper investigates the relationship of the distortion degree of signal characteristics and the periodic nonstationarity of the root-mean-square value of the level of frequency and amplitude noises as a function of the distance to the location object and the value of external feedback parameter of the autodyne “generator–location object” system. It has been shown that at a small value of the parameter of external feedback, the signal characteristics are quasi-harmonic similar to homodyne type systems, while noises represent a stationary random process. If the value of external feedback parameter is comparable to unity, anharmonic distortions are observed in signal characteristics, while the periodic nonstationarity is observed in noise characteristics. It was established that with an increase of distance to the location object, when the delay time of reflected radiation became comparable or larger than the period of autodyne response, the degree of anharmonic distortions of signal characteristics and the height of peaks of root-mean-square noise level were significantly reduced. The results of experimental investigations have been obtained using the prototype of autodyne sensor with frequency modulation built on the 8-mm band Gunn diode.

References

B. M. Armstrong, R. Brown, F. Rix, J. A. C. Stewart, “Use of microstrip impedance- measurement technique in the design of a BARITT diplex Doppler sensor,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1437–1442, 1980, doi: https://doi.org/10.1109/TMTT.1980.1130263.

A. Efanov, C. Diskus, A. Stelzer, H. W. Thim, K. Lübke, A. Springer, “Development of a 35 GHz radar sensor,” Ann. Des Telecommun., vol. 52, no. 3–4, pp. 219–223, 1997, doi: https://doi.org/10.1007/BF02996047.

D. A. Usanov, A. V. Skripal, A. V. Skripal, A. E. Postelga, “A microwave autodyne meter of vibration parameters,” Instruments Exp. Tech., vol. 47, no. 5, pp. 689–693, 2004, doi: https://doi.org/10.1023/B:INET.0000043882.16801.3a.

S. A. Alidoost, R. Sadeghzade, R. Fatemi, “Autodyne system with a single antenna,” in Proc. of 11th Int. Radar Symp., 2010, uri: https://ieeexplore.ieee.org/document/5547497.

I. V. Vetrova, A. A. Doroshenko, A. E. Postel’ga, D. A. Usanov, “Remote control of the surface movement of an object using a two-channel SHF autodyne generator,” J. Commun. Technol. Electron., vol. 64, no. 4, pp. 409–416, 2019, doi: https://doi.org/10.1134/S1064226919040119.

D. A. Usanov, A. E. Postelga, “Reconstruction of complicated movement of part of the human body using radio wave autodyne signal,” Biomed. Eng., vol. 45, no. 1, pp. 6–8, 2011, doi: https://doi.org/10.1007/s10527-011-9198-9.

G. P. Ermak, I. V. Popov, A. S. Vasiliev, A. V. Varavin, V. Y. Noskov, K. A. Ignatkov, “Radar sensors for hump yard and rail crossing applications,” Telecommun. Radio Eng., vol. 71, no. 6, pp. 567–580, 2012, doi: https://doi.org/10.1615/TelecomRadEng.v71.i6.80.

S. Kim, B.-H. Kim, J.-G. Yook, G.-H. Yun, “Proximity vital sign sensor using self-oscillating mixer,” in 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016, pp. 1446–1448, doi: https://doi.org/10.1109/URSIAP-RASC.2016.7601402.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupakhin, “Application of two-diode autodynes in devices for radiowave control of product dimensions,” Meas. Tech., vol. 59, no. 7, pp. 715–721, 2016, doi: https://doi.org/10.1007/s11018-016-1035-9.

F. Mirsaitov, K. A. Ignatkov, “Gas turbine engine in-flight diagnostics using 3D vibration spectra,” in 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018, pp. 275–278, doi: https://doi.org/10.1109/USBEREIT.2018.8384603.

P. A. Jefford, M. J. Howes, “Modulation schemes in low-cost microwave field sensors,” IEEE Trans. Microw. Theory Tech., vol. 31, no. 8, pp. 613–624, 1983, doi: https://doi.org/10.1109/TMTT.1983.1131559.

I. V. Komarov, S. M. Smolskly, Fundamentals of Short-Range FM Radar. Norwood: Artech House, 2004.

S. D. Votoropin, V. Y. Noskov, S. M. Smolskiy, “An analysis of the autodyne effect of oscillators with linear frequency modulation,” Russ. Phys. J., vol. 51, no. 6, pp. 610–618, 2008, doi: https://doi.org/10.1007/s11182-008-9083-5.

A. V. Varavin, A. S. Vasiliev, G. P. Yermak, I. V. Popov, “Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor,” Telecommun. Radio Eng., vol. 69, no. 5, pp. 451–458, 2010, doi: https://doi.org/10.1615/TelecomRadEng.v69.i5.80.

J. A. Scheer, J. L. Kurtz, Eds., Coherent Radar Performance Estimation. Norwood: Artech House, 1993.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. V. Vasiliev, G. P. Ermak, S. M. Smolskiy, “Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation,” Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, no. 67, pp. 50–57, 2016, doi: https://doi.org/10.20535/RADAP.2016.67.50-57.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. V. Vasiliev, G. P. Ermak, S. M. Smolskiy, “Signals of autodyne radars with frequency modulation according to symmetric saw-tooth law,” Telecommun. Radio Eng., vol. 75, no. 17, pp. 1551–1566, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i17.40.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, A. S. Vasilyev, G. P. Ermak, S. M. Smolskiy, “Signals of autodyne sensors with sinusoidal frequency modulation,” Radioengineering, vol. 26, no. 4, pp. 1182–1190, 2017, doi: https://doi.org/10.13164/re.2017.1182.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, “Moving object signal analysis of autodyne radars with linear types of frequency,” Ural Radio Eng. J., vol. 1, no. 1, pp. 24–54, 2017, doi: https://doi.org/10.15826/urej.2017.1.1.002.

V. Y. Noskov, K. A. Ignatkov, A. P. Chupahin, G. P. Ermak, A. S. Vasyliev, “Calculation of autodyne radar noise parameters,” in 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), 2016, pp. 1–4, doi: https://doi.org/10.1109/MSMW.2016.7538099.

V. Y. Noskov, A. S. Vasilev, G. P. Ermak, K. A. Ignatkov, A. P. Chupakhin, “Fluctuation characteristics of autodyne radars with frequency modulation,” Radioelectron. Commun. Syst., vol. 60, no. 3, pp. 123–131, 2017, doi: https://doi.org/10.3103/S0735272717030049.

V. S. Anishchenko, V. V. Astakhov, T. E. Vadivasova, Regular and Chaotic Self-Oscillations. Synchronization and the Impact of Fluctuations, [in Russian]. Dolgoprudnyi: Intellect, 2009.

V. Y. Noskov, K. A. Ignatkov, “About applicability of quasi-statistic method of autodyne systems analysis,” Radioelectron. Commun. Syst., vol. 57, no. 3, pp. 139–148, 2014, doi: https://doi.org/10.3103/S0735272714030054.

É. V. Kal’yanov, “Autoparametric delay system with time lag,” Tech. Phys., vol. 52, no. 8, pp. 963–967, 2007, doi: https://doi.org/10.1134/S1063784207080014.

V. Y. Noskov, K. A. Ignatkov, “Autodyne signals in case of random delay time of the reflected radiation,” Telecommun. Radio Eng., vol. 72, no. 16, pp. 1521–1536, 2013, doi: https://doi.org/10.1615/TelecomRadEng.v72.i16.70.

V. Y. Noskov, K. A. Ignatkov, “Peculiarities of noise characteristics of autodynes under strong external feedback,” Russ. Phys. J., vol. 56, no. 12, pp. 1445–1460, 2014, doi: https://doi.org/10.1007/s11182-014-0198-6.

V. Y. Noskov, K. A. Ignatkov, “Dynamics of autodyne response formation in microwave generators,” Radioelectron. Commun. Syst., vol. 56, no. 5, pp. 227–242, 2013, doi: https://doi.org/10.3103/S0735272713050026.

Waveform of SRRLS output signal and high-frequency noise at distance 10 m

Published

2021-04-30

Issue

Section

Research Articles