Distributed resonators from comparable sections of transmission line

Authors

DOI:

https://doi.org/10.3103/S0735272721030018

Keywords:

resonator, stepped impedance resonator, SIR, critical frequencies, parametric synthesis, structural-parametric synthesis

Abstract

The paper proposes new methods of parametric and structural-parametric synthesis of resonators that contain multiple transmission line segments of the same length. These methods allow to optimize resonators of different configurations and with different characteristic impedances of line segments Z0i. Optimal resonators are those that have the minimum ratio m = Z0max/Z0min for a given ratio between critical frequencies (poles and zeros of input impedance). Parametric synthesis refers to stepped impedance resonators (SIR), whose composite segments are oriented along one straight line. Structural-parametric synthesis is applied to resonators of a more general kind, which contain open and short-circuited stubs. Parametric synthesis made it possible to optimize some SIRs that have a useful relationship between critical frequencies. Resonators of more complex configuration are synthesized using structural-parametric synthesis. Their parameters significantly exceed SIR. This is due to the fact that in structural-parametric synthesis the possibilities of choosing the best solution are much wider. The authors proposed a microstrip bandpass filter (BPF) with synthesized resonators, which provide the ratio of the first two resonant frequencies 6.84 and wide stopband at m = 2.2.

References

D. Psychogiou, R. Gomez-Garcia, D. Peroulis, “RF wide-band bandpass filter with dynamic in-band multi-interference suppression capability,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 7, pp. 898–902, 2018, doi: https://doi.org/10.1109/TCSII.2017.2726145.

W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, “High selectivity wideband balanced filters with multiple transmission zeros,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 10, pp. 1182–1186, 2017, doi: https://doi.org/10.1109/TCSII.2015.2482398.

R. Gomez-Garcia, R. Loeches-Sanchez, D. Psychogiou, D. Peroulis, “Multi-stub-loaded differential-mode planar multiband bandpass filters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 3, pp. 271–275, 2018, doi: https://doi.org/10.1109/TCSII.2017.2688336.

L. Balewski et al., “Step on it bringing fullwave finite-element microwave filter design up to speed,” IEEE Microw. Mag., vol. 21, no. 3, pp. 34–49, 2020, doi: https://doi.org/10.1109/MMM.2019.2958165.

S. Tamiazzo, G. Macchiarella, “Synthesis of cross-coupled filters with frequency-dependent couplings,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 3, pp. 775–782, 2017, doi: https://doi.org/10.1109/TMTT.2016.2633258.

P. Zhao, K. Wu, “Cascading fundamental building blocks with frequency-dependent couplings in microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 4, pp. 1432–1440, 2019, doi: https://doi.org/10.1109/TMTT.2019.2895532.

A. Zakharov, S. Rozenko, L. Pinchuk, S. Litvintsev, “Microstrip quazi-elliptic bandpass filter with two pairs of anti-parallel mixed-coupled SIRs,” IEEE Microw. Wirel. Components Lett., vol. 31, no. 5, pp. 433–436, 2021, doi: https://doi.org/10.1109/LMWC.2021.3065394.

S. Marin, J. D. Martinez, C. I. Valero, V. E. Boria, “Microstrip filters with enhanced stopband based on lumped bisected pi-sections with parasitics,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 1, pp. 19–21, 2017, doi: https://doi.org/10.1109/LMWC.2016.2630841.

S. Chen, L.-F. Shi, G.-X. Liu, J.-H. Xun, “An alternate circuit for narrow-bandpass elliptic microstrip filter design,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 7, pp. 624–626, 2017, doi: https://doi.org/10.1109/LMWC.2017.2711528.

A. V. Zakharov, M. E. Il’chenko, “A new approach to designing varicap-tuned filters,” J. Commun. Technol. Electron., vol. 55, no. 12, pp. 1424–1431, 2010, doi: https://doi.org/10.1134/S1064226910120156.

W.-J. Zhou, J.-X. Chen, “High-selectivity tunable balanced bandpass filter with constant absolute bandwidth,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 8, pp. 917–921, 2017, doi: https://doi.org/10.1109/TCSII.2016.2621120.

L. Gao, T.-W. Lin, G. M. Rebeiz, “Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 10, pp. 3831–3842, 2019, doi: https://doi.org/10.1109/TCSI.2019.2914170.

D. Lu, X. Tang, N. S. Barker, M. Li, T. Yan, “Synthesis-applied highly selective tunable dual-mode BPF with element-variable coupling matrix,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 4, pp. 1804–1816, 2018, doi: https://doi.org/10.1109/TMTT.2017.2783376.

A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, “Hairpin resonators in varactor-tuned microstrip bandpass filters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 10, pp. 1874–1878, 2020, doi: https://doi.org/10.1109/TCSII.2019.2953247.

A. Zakharov, S. Litvintsev, M. Ilchenko, “Transmission line tunable resonators with intersecting resonance regions,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 4, pp. 660–664, 2020, doi: https://doi.org/10.1109/TCSII.2019.2922429.

M.-S. Chung, I.-S. Kim, S.-W. Yun, “Varactor-tuned hairpin bandpass filter with an attenuation pole,” in 2005 Asia-Pacific Microwave Conference Proceedings, 2005, vol. 4, pp. 1–4, doi: https://doi.org/10.1109/APMC.2005.1606748.

G. Megla, Dezimeterwellentechnik: Theorie Und Technik Der Dezimeterschaltungen, 4th ed. Leipzig: Fachbuchverlag, 1955.

M. Makimoto, S. Yamashita, “Compact bandpass filters using stepped impedance resonators,” Proc. IEEE, vol. 67, no. 1, pp. 16–19, 1979, doi: https://doi.org/10.1109/PROC.1979.11196.

M. Makimoto, S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, 1980, doi: https://doi.org/10.1109/TMTT.1980.1130258.

L. Zhu, S. Sun, W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wirel. Components Lett., vol. 15, no. 11, pp. 796–798, 2005, doi: https://doi.org/10.1109/LMWC.2005.859011.

J. X. Chen, Y. Ma, J. Cai, L. H. Zhou, Z. H. Bao, W. Che, “Novel frequency-agile bandpass filter with wide tuning range and spurious suppression,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6428–6435, 2015, doi: https://doi.org/10.1109/TIE.2015.2427122.

W. Qin, J. Cai, Y.-L. Li, J.-X. Chen, “Wideband tunable bandpass filter using optimized varactor-loaded SIRs,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 9, pp. 812–814, 2017, doi: https://doi.org/10.1109/LMWC.2017.2734848.

A. V. Zakharov, M. Y. Ilchenko, L. S. Pinchuk, “Coupling coefficients of step-impedance resonators in stripeline band-pass filters of array type,” Radioelectron. Commun. Syst., vol. 57, no. 5, pp. 217–223, 2014, doi: https://doi.org/10.3103/S0735272714050045.

A. V. Zakharov, M. Y. Ilchenko, V. Y. Karnauh, L. S. Pinchuk, “Stripline bandpass filters with step-impedance resonators,” Radioelectron. Commun. Syst., vol. 54, no. 3, pp. 163–169, 2011, doi: https://doi.org/10.3103/S0735272711030071.

A. Zakharov, S. Litvintsev, M. Ilchenko, “Trisection bandpass filters with all mixed couplings,” IEEE Microw. Wirel. Components Lett., vol. 29, no. 9, pp. 592–594, 2019, doi: https://doi.org/10.1109/LMWC.2019.2929650.

P. I. Richards, “Resistor-transmission-line circuits,” Proc. IRE, vol. 36, no. 2, pp. 217–220, 1948, doi: https://doi.org/10.1109/JRPROC.1948.233274.

H. J. Riblet, “General synthesis of quarter-wave impedance transformers,” IRE Trans. Microw. Theory Tech., vol. 5, no. 1, pp. 36–43, 1957, doi: https://doi.org/10.1109/TMTT.1957.1125088.

A. Matsumoto, Ed., Microwave Filters and Circuits, 1st ed. Academic Press, 1970, uri: https://www.elsevier.com/books/microwave-filters-and-circuits/matsumoto/978-0-12-027961-6.

G. C. Temes, S. K. Mitra, Eds., Modern Filter Theory and Design. New York: Wiley, 1973.

G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York, NY: McGraw-Hill, 1961.

J.-S. Hong, Microstrip Filters for RF/Microwave Applications, 2nd ed. New Jersey: Wiley, 2011, doi: https://doi.org/10.1002/9780470937297.

W. Cauer, W. Klein, F. M. Pelz, K. Cauer, G. E. Knausenberger, Synthesis of Linear Communications Networks. New York, NY: McGraw-Hill, 1958.

H. Ozaki, J. Ishii, “Synthesis of a class of strip-line filters,” IRE Trans. Circuit Theory, vol. 5, no. 2, pp. 104–109, 1958, doi: https://doi.org/10.1109/TCT.1958.1086441.

J. T. Kuo, E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554–1559, 2003, doi: https://doi.org/10.1109/TMTT.2003.810138.

A. V. Zakharov, M. E. Il’chenko, “Thin bandpass filters containing sections of symmetric strip transmission line,” J. Commun. Technol. Electron., vol. 58, no. 7, pp. 728–736, 2013, doi: https://doi.org/10.1134/S1064226913060144.

A. V. Zakharov, M. E. Il’chenko, “Pseudocombline bandpass filters based on half-wave resonators manufactured from sections of balanced striplines,” J. Commun. Technol. Electron., vol. 60, no. 7, pp. 801–807, 2015, doi: https://doi.org/10.1134/S1064226915060182.

Topology of synthesized resonator with four segments

Published

2020-03-30

Issue

Section

Research Articles