Primary frequency properties of LPTV circuits
DOI:
https://doi.org/10.3103/S0735272724100042Keywords:
parametric circuits, linear periodically time-varying circuits, LPTV circuits, frequency symbolic method, transfer function, characteristic frequenciesAbstract
The paper considers primary frequency properties of parametric LPTV (linear periodically time-varying) circuits in steady state under the action of a harmonic input signal and periodic changes of parametric elements. Based on the representation of the transfer function by a finite Fourier series, an analytical expression for the output signal of a parametric circuit has been obtained. The conditions for the coincidence of pair harmonic components forming characteristic frequencies with amplification or attenuation effects have been investigated. A method for determining such frequencies has been proposed, and examples of its application in a synchronous detector, frequency converter, modulator, and in single-loop and dual-loop parametric amplifiers have been presented. The results obtained can be used to design radioelectronic devices with due regard for the parametric effects.
References
- Y. Shapovalov, D. Bachyk, K. Detsyk, R. Romaniuk, I. Shapovalov, “Analysis of complex linear periodically time-varying circuits by method of reduced matrix D-trees,” Radioelectron. Commun. Syst., vol. 66, no. 4, pp. 190–203, 2023, doi: https://doi.org/10.3103/S0735272723060018.
- Y. Shapovalov, S. Mankovskyy, D. Bachyk, A. Piwowar, Ł. Chruszczyk, D. Grzechca, “Machine learning use cases in the frequency symbolic method of linear periodically time-variable circuits analysis,” Appl. Sci., vol. 14, no. 17, p. 7926, 2024, doi: https://doi.org/10.3390/app14177926.
- N. Reiskarimian, L. Zhang, H. Krishnaswamy, “Linear periodically time-varying (LPTV) circuits enable new radio architectures for emerging wireless communication paradigms,” in Proceedings of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–4, doi: https://doi.org/10.1145/3061639.3072954.
- G. Ptitcyn, M. S. Mirmoosa, A. Sotoodehfar, S. A. Tretyakov, “A tutorial on the basics of time-varying electromagnetic systems and circuits: Historic overview and basic concepts of time-modulation,” IEEE Antennas Propag. Mag., vol. 65, no. 4, pp. 10–20, 2023, doi: https://doi.org/10.1109/MAP.2023.3261601.
- A. Piwowar, D. Grabowski, “Modelling of the first-order time-varying filters with periodically variable coefficients,” Math. Probl. Eng., vol. 2017, pp. 1–7, 2017, doi: https://doi.org/10.1155/2017/9621651.
- B. Ho Eom, P. K. Day, H. G. LeDuc, J. Zmuidzinas, “A wideband, low-noise superconducting amplifier with high dynamic range,” Nat. Phys., vol. 8, no. 8, pp. 623–627, 2012, doi: https://doi.org/10.1038/nphys2356.
- A. Oppenheim, A. Willsky, S. H. Nawab, Signals and Systems. Upper Saddle River: Prentice Hall, 1996.
- Y. O. Koval, L. V. Grinchenko, I. O. Milyutchenko, O. I. Rybin, Foundations of Circuit Theory. Textbook for Students, [in Ukrainian]. Kharkiv: CMIT, 2008.
- I. S. Gonorovskiĭ, Radiotechnical Circuits and Signals, 5th ed. Moscow: Drofa, 2006.
- G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers, Revised ed. Mineola, NY: Dover Publications, 2000.
- A. A. Kharkevich, Fundamentals of Radio Engineering. Moscow: Fizmatlit, 2007.
- S. Faruque, Radio Frequency Modulation Made Easy. Cham: Springer International Publishing, 2017, doi: https://doi.org/10.1007/978-3-319-41202-3.
- Y. Shapovalov, “Multivariate modelling of the LPTV circuits in the MAOPCs software environment,” Przegląd Elektrotechniczny, vol. 1, no. 7, pp. 160–165, 2022, doi: https://doi.org/10.15199/48.2022.07.26.
