Controlled patch antenna of axial topology with quasi-fractal substructure
DOI:
https://doi.org/10.3103/S0735272724100017Keywords:
unclosed ring microstrip resonator, disk microstrip resonator, quasi-fractal, frequency selection, spectral characteristic, radiation fieldsAbstract
The paper presents the results of numerical simulation of the main electrodynamic characteristics of a controlled planar antenna with a hybrid topology containing an unclosed ring microstrip resonator, a disk microstrip resonator with quasi-fractal internal structure, and a controlled semiconductor element. For numerical simulation an integrated approach was used, including the semi-open resonator method and the finite element method (FEM). The FEM was implemented using the commercial package ANSYS HFSS. A quasi-fractal substructure made it possible to implement an additional frequency selection.
References
- K. Wong, Compact and Broadband Microstrip Antennas. Wiley, 2002, doi: https://doi.org/10.1002/0471221112.
- J. Liu, Q. Xue, H. Wong, H. W. Lai, Y. Long, “Design and analysis of a low-profile and broadband microstrip monopolar patch antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 11–18, 2013, doi: https://doi.org/10.1109/TAP.2012.2214996.
- D. V. Maiboroda, S. A. Pogarsky, “On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure,” Telecommun. Radio Eng., vol. 73, no. 19, pp. 1713–1726, 2014, doi: https://doi.org/10.1615/TelecomRadEng.v73.i19.20.
- Y. Li, W. Yu, “A miniaturized triple band monopole antenna for WLAN and WiMAX applications,” Int. J. Antennas Propag., vol. 2015, pp. 1–5, 2015, doi: https://doi.org/10.1155/2015/146780.
- M. Niroo-Jazi, T. A. Denidni, “A new triple-band circular ring patch antenna with monopole-like radiation pattern using a hybrid technique,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3512–3517, 2011, doi: https://doi.org/10.1109/TAP.2011.2163768.
- Y. Sung, “Dual-band circularly polarized stack-ring antenna,” J. Electromagn. Eng. Sci., vol. 19, no. 1, pp. 37–41, 2019, doi: https://doi.org/10.26866/jees.2019.19.1.37.
- Z. G. Liu, Y. X. Guo, “Dual band low profile antenna for body centric communications,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 2282–2285, 2013, doi: https://doi.org/10.1109/TAP.2012.2234071.
- N. Rajak, N. Chattoraj, R. Mark, “Metamaterial cell inspired high gain multiband antenna for wireless applications,” AEU - Int. J. Electron. Commun., vol. 109, pp. 23–30, 2019, doi: https://doi.org/10.1016/j.aeue.2019.07.003.
- F. Xue, H. Wang, Y. Wang, L. Zhang, “Broadband and high efficiency single-layer reflectarray using circular ring attached two sets of phase-delay lines,” Prog. Electromagn. Res. M, vol. 66, pp. 193–202, 2018, doi: https://doi.org/10.2528/PIERM18010916.
- R. Garg, P. Bhartia, I. J. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook. Boston, London: Artech House, 2001.
- K.-F. Lee, K. Ho, J. Dahele, “Circular-disk microstrip antenna with an air gap,” IEEE Trans. Antennas Propag., vol. 32, no. 8, pp. 880–884, 1984, doi: https://doi.org/10.1109/TAP.1984.1143428.
- D. O. Akande, K. O. Odeyemi, E. O. Ogunti, “Design of an S-band circular microstrip patch antenna,” J. Telecommun., vol. 9, no. 1, pp. 7–14, 2011.
- R. Bauer, E. Levine, H. Matzner, S. Shtrikman, “Analysis of a microstrip disk antenna with a finite ground plane,” Electromagnetics, vol. 15, no. 5, pp. 485–497, 1995, doi: https://doi.org/10.1080/02726349508908437.
- A. Al-Zoubi, F. Yang, A. Kishk, “A broadband center-fed circular patch-ring antenna with a monopole like radiation pattern,” IEEE Trans. Antennas Propag., vol. 57, no. 3, pp. 789–792, 2009, doi: https://doi.org/10.1109/TAP.2008.2011406.
- T. Chakravarty, S. Biswas, A. Majumdar, A. De, “Computation of resonant frequency of annular-ring-loaded circular patch using cavity model analysis,” Microw. Opt. Technol. Lett., vol. 48, no. 3, pp. 622–626, 2006, doi: https://doi.org/10.1002/mop.21426.
- S. G. Pintzos, R. Pregla, “A simple method for computing the resonant frequencies of microstrip ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 26, no. 10, pp. 809–813, 1978, doi: https://doi.org/10.1109/TMTT.1978.1129491.
- O. Quevedo-Teruel, E. Rajo-Iglesias, “Design of short-circuited ring-patch antennas working at TM01 mode based on neural networks,” IEEE Antennas Wirel. Propag. Lett., vol. 5, pp. 559–562, 2006, doi: https://doi.org/10.1109/LAWP.2006.889559.
- W. Jeong, J. Tak, J. Choi, “A low-profile IR-UWB antenna with ring patch for WBAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1447–1450, 2015, doi: https://doi.org/10.1109/LAWP.2015.2411263.
- M. A. Kozachuk, V. I. Naidenko, F. F. Dubrovka, “Ultrawideband planar double-sided metallized tapered slot antenna with modified topology,” Radioelectron. Commun. Syst., vol. 65, no. 10, pp. 543–550, 2022, doi: https://doi.org/10.3103/S0735272722120068.
- J. Liu, S. Zheng, Y. Li, Y. Long, “Broadband monopolar microstrip patch antenna with shorting vias and coupled ring,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 39–42, 2014, doi: https://doi.org/10.1109/LAWP.2013.2295686.
- T. L. Wu, Y. M. Pan, P. F. Hu, “Wideband omnidirectional slotted patch antenna with filtering response,” IEEE Access, vol. 5, pp. 26015–26021, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2768067.
- S. A. Pogarsky, D. V. Mayboroda, S. M. Mykhaliuk, “Antenna based on complicated coplanar structure,” East Eur. J. Phys., no. 2, pp. 456–462, 2024, doi: https://doi.org/10.26565/2312-4334-2024-2-60.
- Y. Yang et al., “Wideband tripolarized MIMO antenna with pattern diversity for 5G application,” IEEE Antennas Wirel. Propag. Lett., vol. 23, no. 1, pp. 349–353, 2024, doi: https://doi.org/10.1109/LAWP.2023.3324391.
- G. Kumar, K. P. Ray, Broadband Microstrip Antennas. Boston, MA and London, UK: Artech House, 2003, uri: https://www.amazon.com/Broadband-Microstrip-Antennas-Girish-Kumar/.
- D. V. Mayboroda, S. A. Pogarsky, E. A. Shaulov, “Fractal antenna,” UA Patent № 123735, 2017.
- D. V. Mayboroda, S. A. Pogarsky, “Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry,” Telecommun. Radio Eng., vol. 75, no. 9, pp. 763–769, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i9.10.
- S. N. Khan, J. Hu, J. Xiong, S. He, “Circular fractal monopole antenna for low VSWR UWB applications,” Prog. Electromagn. Res. Lett., vol. 1, pp. 19–25, 2008, doi: https://doi.org/10.2528/PIERL07110903.
- Y. Liu, Y. Hao, H. Wang, K. Li, S. Gong, “Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1290–1293, 2015, doi: https://doi.org/10.1109/LAWP.2015.2402292.
- Y. Liu, S. Gong, H.-B. Zhang, “A novel fractal slot microstrip antenna with low RCS,” in 2006 IEEE Antennas and Propagation Society International Symposium, 2006, pp. 2603–2606, doi: https://doi.org/10.1109/APS.2006.1711133.
- S. A. Pogarsky, D. V. Mayboroda, S. N. Mykhaliuk, “Microstrip antenna with quasi-fractal substructure,” in 2024 IEEE 29th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2024, pp. 103–106, doi: https://doi.org/10.1109/DIPED63529.2024.10706159.
- “Ansoft HFSS /ANSYS Academic Research HF (5 tasks): 1 task(s) Permanent with TECS Customer # 1076710.”
- N. Rainee, P. D. Simons, “Conductor‐backed coplanar waveguide,” in Coplanar Waveguide Circuits, Components, and Systems, Wiley, 2001, pp. 87–111.

Downloads
Published
2024-07-25
Issue
Section
Research Articles