A Review on Recent Designs of Metamaterial Embedded Microstrip Patch Antennas for Wireless Applications

Authors

DOI:

https://doi.org/10.3103/S073527272408003X

Keywords:

Patch Antenna, Metamaterials (MTM), Metasurfaces (MTS), Miniaturization, Defected Ground Structures (DGS), MIMO, Beam Splitting.

Abstract

Metamaterials are artificial structures arranged in homogeneous manner. It exhibits the properties of electromagnetic waves which are not discovered in naturally available materials. These types of materials place a major role for development and application of recent trending technologies. The eminent characteristics of metamaterials (MTM) are to enhance the performance of antenna interms of gain, bandwidth, efficiency, and generate multiband. These materials will also helpful to enhance the isolation in MIMO Antennas. So the behaviour of metamaterial is embedded on patch antenna to enhance the performance of antenna. This paper presents a review on recent progress in metamaterials and Metasurfaces to design curtail antennas, gain-bandwidth enhancement, isolation improvement techniques, miniaturization and beam splitters. The Metasurfaces (MTS) are part of metamaterials which are in uniform/non-uniform structure arrangement. The MTS structures reduce the surface current distribution and enhance the performance of the antenna based on the arrangement of structures. Now a day the demand is for wideband, multiband, high data rates and beam-splitting to cover the entire region supported by the 5G communication to provide good services to the users. So the MTM and MTS structures place a major role to design such type of antennas to meet the challenges in present and future coming generations in the telecommunication systems.

References

  1. T.Z. Fadhil. N.A. Murad, M.K A. Rahim, M. R. Hamid And Levy Olivia Nur “A Beam-
  2. Split Metasurface Antenna For 5g Applications” IEEE Access, Vol.10,1162-1174,
  3. January 5,2022.
  4. Chirag Arora A, Shyam S. Pattnaik B, R.N. Baral “Performance Enhancement Of Patch
  5. Antenna Array For 5.8 Ghz Wi-Max Applications Using Metamaterial Inspired
  6. Technique” Int. J. Electron. Commun. (Aeü) 79 (2017) 124–131.
  7. Amit K.Singh, Mahesh P. Abegaonkar, Shiban Kishen Koul “ Metamaterials For Antena
  8. Applications” Taylor & Francis Group, Llc, Crc Press, Newyork, 2022.
  9. Christos Milias, Rasmus B. Andersen, Pavlos I. Lazaridis, Zaharias D Zaharis, Bilal
  10. Muhammad, Jes T. B. Kristensen , Albena Mihovska, And Dan D. S. Hermansen”
  11. Metamaterial-Inspired Antennas: A Review Of The State Of The Art And Future Design
  12. Challenges” IEEE Access, Vol.X, 2021.
  13. M. Venkateswara Rao, B.T.P. Madhav, T. Anilkumar, B. Prudhvi Nadh “Metamaterial
  14. Inspired Quad Band Circularly Polarized Antenna For Wlan/Ism/Bluetooth/Wimax
  15. And Satellite Communication Applications” International Journal of Electronics And
  16. Communications, Aeue 52545, October 2018.
  17. Mohammad Ameen, Raghvendra Kumar Chaudhary” Compact Radiator Antenna: A New
  18. Approach To Enhance The Bandwidth Using Eng-Tl And C-Csrr Mushroom Meta-
  19. Resonator” Int. J. Electron. Commun. (Aeü) 134 (2021) 153697.
  20. Murtala Aminu-Baba, Mohamad Kamal A. Rahim, Farid Zubir, Adamu Yau Iliyasu,
  21. Kabiru Ibrahim Jahun, Mohd Fairus Mohd Yusoff, M.M. Gajibo, A.A Pramudita, Irene
  22. Kong Cheh Lin” A Compact Triband Miniaturized Mimo Antenna For Wlan
  23. Applications” Aeue - International Journal Of Electronics And Communications 136
  24. (2021) 153767.
  25. Saktioto, Yan Soerbakti, Romi Fadli Syahputra, Moh. Danil Hendry Gamal, Dedi Irawan,
  26. Emansa Hasri Putra, Rizadi Sasmita Darwis, Okfalisa “Improvement Of Low-Profile
  27. Microstrip Antenna Performance By Hexagonal-Shaped Srr Structure With Dng
  28. Metamaterial Characteristic As Uwb Application” Alexandria Engineering Journal (2022)
  29. , 4241–4252.
  30. Rashmi, Ashok Kumar, Kapil Saraswat, Arjun Kumar “Wideband Circularly Polarized
  31. Parasitic Patches Loaded Coplanar Waveguide Fed Square Slot Antenna With Grounded
  32. Strips And Slots For Wireless Communication Systems” International Journal Of
  33. Electronics And Communications, Aeue 153011, November 21, 2019.
  34. Mohammad Ameen, Abinash Mishra, Raghvendra Kumar Chaudhary” Asymmetric
  35. Cpw-Fed Electrically Small Metamaterial- Inspired Wideband Antenna For 3.3/3.5/5.5
  36. Ghz Wimax And 5.2/5.8 Ghz Wlan Applications” Int. J. Electron. Commun. (Aeü) 119
  37. (2020) 153177.
  38. Ketavath Kumar Naik, M. Suman, E.V.Krishna Rao “ Design Of Complementary Split
  39. Ring Resonators On Elliptical Patch Antenna With Enhanced Gain For Terahertz
  40. Applications” Optik - International Journal For Light And Electron Optics 243 (2021)
  41. Enyu Zhou, Yongzhi Cheng, Fu Chen, Hui Luo “Wideband And High-Gain Patch
  42. Antenna With Reflective Focusing Metasurface” Int. J. Electron. Commun. (Aeü) 134
  43. (2021) 153709.
  44. Neha Rajak, Neela Chattoraj, Robert Mark “Metamaterial Cell Inspired High Gain
  45. Multiband Antenna For Wireless Applications” Int. J. Electron. Commun. (Aeü) 109
  46. (2019) 23–30.
  47. Srinivas Guthi, Vakula Damera “ High Gain And Broadband Circularly Polarized
  48. Antenna Using Metasurface And Cpw Fed L-Shaped Aperture” Int. J. Electron. Commun.
  49. (Aeü) 146 (2022) 154109.
  50. Surendrakumar Painam, Chandramohan Bhuma “Miniaturizing A Microstrip Antenna
  51. Using Metamaterials And Metasurfaces” IEEE Antennas & Wave Magazine, 1045-
  52. /19, February 2019.
  53. Tanweer Alia, A.W. Mohammad Saadha, R.C Biradara, Jaume Anguerab, Aurora
  54. Andújarc “A Miniaturized Metamaterial Slot Antenna For Wireless Applications” Int. J.
  55. Electron. Commun. (Aeü) 82 (2017) 368–382.
  56. Hedi Sakli 1,2, C. Abdelhamid1, C. Essid3, And N. Sakli “Metamaterial- Based Antenna
  57. Performance Enhancement For Mimo System Applications” IEEE Access, Vol.9, 2021.
  58. Christos Milias, Rasmus B. Andersen, Pavlos I. Lazaridis, Zaharias D. Zaharis, Bilal
  59. Muhammad, Jes T. B. Kristensen, Albena.Mihovska, And Dan D. S. Hermansen
  60. “Miniaturized Multiband Metamaterial Antennas With Dual-Band Isolation
  61. Enhancement” IEEE Access, Vol.10, 64952-64964, 2022.
  62. Shakeeb Abdullah , Gaozhi Xiao, And Rony E. Amaya “A Review On The History And
  63. Current Literature Of Metamaterials And Its Applications To Antennas & Radi
  64. Frequency Identification (Rfid) Devices” IEEE Journal Of Radio Frequency
  65. Identification, Vol. 5, No. 4, December 2021.
  66. Bashar A. F. Esmail, Slawomir Koziel And Stanislaw Szczepanski
  67. “Overview Of Planar Antenna Loading Metamaterials For Gain Performance
  68. Enhancement: The Two Decades Of Progress” IEEE Access, 27381-27403, Volume 10,
  69. C. Cheng, Y. Lu, D. Zhang, F. Ruan, And G. Li “Gain Enhancement Of Terahertz Patch
  70. Antennas By Coating Epsilon-Near-Zero Metamaterials,'' Superlattices Microstruct.,
  71. Vol.139, Pp. 1_8, Mar. 2020.
  72. D. Gangwar, S. Das, And R. L. Yadava, ``Gain Enhancement Of Microstrip Patch
  73. Antenna Loaded With Split Ring Resonator Based Relative Permeability Near Zero As
  74. Superstrate,'' Wireless Pers. Commun., Vol. 96, No. 2, Pp. 2389_2399, Sep. 2017.
  75. D. Mitra, B. Ghosh, A. Sarkhel, And S. R. B. Chaudhuri, “A Miniaturizedring Slot
  76. Antenna Design With Enhanced Radiation Characteristics,'' IEEE Trans. Antennas
  77. Propag., Vol. 64, No. 1, Pp. 300_305, Jan. 2016.
  78. A. Bakhtiari, ``Investigation Of Enhanced Gain Miniaturized Patch Antenna Using Near
  79. Zero Index Metamaterial Structure Characteristics,'' Iete J. Res., Pp. 1_8, 2019, Doi:
  80. 1080/03772063.2019.1644973.
  81. A. Boukarkar, X.-Q. Lin, Y. Jiang, And Y.-Q. Yu, “Miniaturized Single-Feed Multi-
  82. Band Patch Antennas,” IEEE Trans. Antennas Propag., Vol. 65, No. 2, Pp. 850–854,
  83. Feb. 2017.

Published

2025-04-13

Issue

Section

Review Articles