Recent designs of metamaterial embedded microstrip patch antennas for wireless applications (review)

Authors

DOI:

https://doi.org/10.3103/S073527272408003X

Keywords:

patch antenna, metamaterial, MTM, metasurface, MTS, miniaturization, defected ground structure, DGS, MIMO, beam splitting

Abstract

Metamaterials are artificial structures arranged homogeneously. It exhibits the properties of electromagnetic waves not discovered in naturally available materials. These materials play a significant role in developing and applying recent trending technologies. The eminent characteristics of metamaterials (MTM) enhance antenna performance regarding gain, bandwidth, efficiency, and multiband generation. These materials will also help improve the isolation of MIMO antennas. So, metamaterial behavior is embedded in the patch antenna to enhance its performance. This paper reviews recent progress in metamaterials and metasurfaces (MTS) to design curtail antennas, gain-bandwidth enhancement, isolation improvement techniques, miniaturization, and beam splitters. The MTSs are part of MTM in uniform/non-uniform structure arrangement. The MTS structures reduce the surface current distribution and enhance the antenna’s performance based on the arrangement of structures. Nowadays, the demand is for wideband, multi-band, high data rates, and beam-splitting to cover the entire region supported by 5G communication to provide good user services. So, the MTM and MTS structures play a significant role in designing such antennas to meet the challenges of present and future generations in the telecommunication systems.

References

  1. T. Z. Fadhil, N. A. Murad, M. K. A. Rahim, M. R. Hamid, L. O. Nur, “A beam-split metasurface antenna for 5G applications,” IEEE Access, vol. 10, pp. 1162–1174, 2022, doi: https://doi.org/10.1109/ACCESS.2021.3137324.
  2. C. Arora, S. S. Pattnaik, R. N. Baral, “Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique,” AEU - Int. J. Electron. Commun., vol. 79, pp. 124–131, 2017, doi: https://doi.org/10.1016/j.aeue.2017.05.045.
  3. A. K. Singh, M. P. Abegaonkar, S. K. Koul, Metamaterials for Antenna Applications. Boca Raton: CRC Press, 2021, doi: https://doi.org/10.1201/9781003045885.
  4. C. Milias et al., “Metamaterial-inspired antennas: a review of the state of the art and future design challenges,” IEEE Access, vol. 9, pp. 89846–89865, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3091479.
  5. M. Venkateswara Rao, B. T. P. Madhav, T. Anilkumar, B. Prudhvi Nadh, “Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications,” AEU - Int. J. Electron. Commun., vol. 97, pp. 229–241, 2018, doi: https://doi.org/10.1016/j.aeue.2018.10.018.
  6. M. Ameen, R. K. Chaudhary, “Compact radiator antenna: A new approach to enhance the bandwidth using ENG-TL and C-CSRR mushroom meta-resonator,” AEU - Int. J. Electron. Commun., vol. 134, p. 153697, 2021, doi: https://doi.org/10.1016/j.aeue.2021.153697.
  7. M. Aminu-Baba et al., “A compact triband miniaturized MIMO antenna for WLAN applications,” AEU - Int. J. Electron. Commun., vol. 136, p. 153767, 2021, doi: https://doi.org/10.1016/j.aeue.2021.153767.
  8. Saktioto et al., “Improvement of low-profile microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application,” Alexandria Eng. J., vol. 61, no. 6, pp. 4241–4252, 2022, doi: https://doi.org/10.1016/j.aej.2021.09.048.
  9. Rashmi, A. Kumar, K. Saraswat, A. Kumar, “Wideband circularly polarized parasitic patches loaded coplanar waveguide-fed square slot antenna with grounded strips and slots for wireless communication systems,” AEU - Int. J. Electron. Commun., vol. 114, p. 153011, 2020, doi: https://doi.org/10.1016/j.aeue.2019.153011.
  10. M. Ameen, A. Mishra, R. K. Chaudhary, “Asymmetric CPW-fed electrically small metamaterial- inspired wideband antenna for 3.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN applications,” AEU - Int. J. Electron. Commun., vol. 119, p. 153177, 2020, doi: https://doi.org/10.1016/j.aeue.2020.153177.
  11. K. K. Naik, M. Suman, E. V. K. Rao, “Design of complementary split ring resonators on elliptical patch antenna with enhanced gain for terahertz applications,” Optik, vol. 243, p. 167434, 2021, doi: https://doi.org/10.1016/j.ijleo.2021.167434.
  12. F. F. Dubrovka, V. I. Gouz, S. Y. Martynyuk, D. O. Vasylenko, A. A. Zaytsev, “Ultra wideband antenna array on the basis of 8×8 shaped slot radiators,” Radioelectron. Commun. Syst., vol. 53, no. 11, pp. 584–590, 2010, doi: https://doi.org/10.3103/S0735272710110026.
  13. E. Zhou, Y. Cheng, F. Chen, H. Luo, “Wideband and high-gain patch antenna with reflective focusing metasurface,” AEU - Int. J. Electron. Commun., vol. 134, p. 153709, 2021, doi: https://doi.org/10.1016/j.aeue.2021.153709.
  14. N. Rajak, N. Chattoraj, R. Mark, “Metamaterial cell inspired high gain multiband antenna for wireless applications,” AEU - Int. J. Electron. Commun., vol. 109, pp. 23–30, 2019, doi: https://doi.org/10.1016/j.aeue.2019.07.003.
  15. S. Guthi, V. Damera, “High gain and broadband circularly polarized antenna using metasurface and CPW fed L-shaped aperture,” AEU - Int. J. Electron. Commun., vol. 146, p. 154109, 2022, doi: https://doi.org/10.1016/j.aeue.2022.154109.
  16. S. Painam, C. Bhuma, “Miniaturizing a microstrip antenna using metamaterials and metasurfaces [antenna applications corner],” IEEE Antennas Propag. Mag., vol. 61, no. 1, pp. 91–135, 2019, doi: https://doi.org/10.1109/MAP.2018.2883018.
  17. T. Ali, A. W. Mohammad Saadh, R. C. Biradar, J. Anguera, A. Andújar, “A miniaturized metamaterial slot antenna for wireless applications,” AEU - Int. J. Electron. Commun., vol. 82, pp. 368–382, 2017, doi: https://doi.org/10.1016/j.aeue.2017.10.005.
  18. H. Sakli, C. Abdelhamid, C. Essid, N. Sakli, “Metamaterial-based antenna performance enhancement for MIMO system applications,” IEEE Access, vol. 9, pp. 38546–38556, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3063630.
  19. C. Milias et al., “Miniaturized multiband metamaterial antennas with dual-band isolation enhancement,” IEEE Access, vol. 10, pp. 64952–64964, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3183800.
  20. S. Abdullah, G. Xiao, R. E. Amaya, “A review on the history and current literature of metamaterials and its applications to antennas & radio frequency identification (RFID) devices,” IEEE J. Radio Freq. Identif., vol. 5, no. 4, pp. 427–445, 2021, doi: https://doi.org/10.1109/JRFID.2021.3091962.
  21. B. A. F. Esmail, S. Koziel, S. Szczepanski, “Overview of planar antenna loading metamaterials for gain performance enhancement: the two decades of progress,” IEEE Access, vol. 10, pp. 27381–27403, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3157634.
  22. C. Cheng, Y. Lu, D. Zhang, F. Ruan, G. Li, “Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials,” Superlattices Microstruct., vol. 139, p. 106390, 2020, doi: https://doi.org/10.1016/j.spmi.2020.106390.
  23. D. Gangwar, S. Das, R. L. Yadava, “Gain enhancement of microstrip patch antenna loaded with split ring resonator based relative permeability near zero as superstrate,” Wirel. Pers. Commun., vol. 96, no. 2, pp. 2389–2399, 2017, doi: https://doi.org/10.1007/s11277-017-4303-3.
  24. D. Mitra, B. Ghosh, A. Sarkhel, S. R. Bhadra Chaudhuri, “A miniaturized ring slot antenna design with enhanced radiation characteristics,” IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 300–305, 2016, doi: https://doi.org/10.1109/TAP.2015.2496628.
  25. A. Bakhtiari, “Investigation of enhanced gain miniaturized patch antenna using near zero index metamaterial structure characteristics,” IETE J. Res., vol. 68, no. 2, pp. 1312–1319, 2022, doi: https://doi.org/10.1080/03772063.2019.1644973.
  26. A. Boukarkar, X. Q. Lin, Y. Jiang, Y. Q. Yu, “Miniaturized single-feed multiband patch antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 850–854, 2017, doi: https://doi.org/10.1109/TAP.2016.2632620.
  27. K. N. Raju, A. Kavitha, K. C. Sekhar, “Design and performance analysis of miniaturized dual-band micro-strip antenna loaded with double negative meta-materials,” Microsyst. Technol., vol. 29, no. 7, pp. 1029–1038, 2023, doi: https://doi.org/10.1007/s00542-023-05494-x.
  28. K. Raju, A. Kavitha, “Linear phased metamaterial incorporated patch antenna array at 28 GHz for 5G base stations,” Proc. Bulg. Acad. Sci., vol. 77, no. 2, 2024, doi: https://doi.org/10.7546/CRABS.2024.02.10.
  29. N. Sharma, S. S. Bhatia, “Metamaterial inspired fidget spinner-shaped antenna based on parasitic split ring resonator for multi-standard wireless applications,” J. Electromagn. Waves Appl., vol. 34, no. 10, pp. 1471–1490, 2020, doi: https://doi.org/10.1080/09205071.2019.1654412.
  30. V. Sharma, N. Lakwar, N. Kumar, T. Garg, “Multiband low‐cost fractal antenna based on parasitic split ring resonators,” IET Microwaves, Antennas Propag., vol. 12, no. 6, pp. 913–919, 2018, doi: https://doi.org/10.1049/iet-map.2017.0623.
  31. M. A. Kozachuk, V. I. Naidenko, F. F. Dubrovka, “Ultrawideband planar double-sided metallized tapered slot antenna with modified topology,” Radioelectron. Commun. Syst., vol. 65, no. 10, pp. 543–550, 2022, doi: https://doi.org/10.3103/S0735272722120068.
  32. F. F. Dubrovka, S. I. Piltyay, “Ultrawideband microwave biconical high-gain antenna for dual-band systems of omnidirectional radio monitoring,” Radioelectron. Commun. Syst., vol. 63, no. 12, pp. 619–632, 2020, doi: https://doi.org/10.3103/S0735272720120018.
  33. F. F. Dubrovka, V. N. Glushchenko, G. A. Yena, P. Y. Stepanenko, V. M. Tereshchenko, “Ultra-wideband horn antennas with a considerable difference in radiation pattern width in E- and H-planes,” Radioelectron. Commun. Syst., vol. 50, no. 1, pp. 50–54, 2007, doi: https://doi.org/10.3103/S0735272707010098.
Metamaterial in superstrate

Published

2024-08-26

Issue

Section

Review Articles