Infrared image iterative enhancement in frequency domain
DOI:
https://doi.org/10.3103/S0735272724070045Keywords:
infrared image, iterative processing, frequency domain, enhancement core, isotropic resolutionAbstract
This paper proposes an approach to infrared image enhancement, involving iterative wrapping of the enhancement core within an image upscale/downscale loop. Such loop enable highlighting and suppressing distortion and blurring of fine image details. Exactly on this the current study is aimed. Therefore, the isotropic pixel resolution of the digital image was chosen as an evaluation criterion. This criterion attunes the pre-processing result to the requirements of infrared image visual interpretation. All processing workflow performs inside the frequency domain, which is beneficial in terms of computational burden. Processing of real infrared images acquired by the UAV demonstrates an improvement in isotropic pixel resolution by a factor of 1.9-2.1, which is slightly superior to known single-pass algorithms. The proposed approach is flexible, modular, and can be easily implemented in both ground-based and onboard processing of infrared imagery.
References
Vollmer M., Möllmann K.-P. Infrared Thermal Imaging: Fundamentals, Research and Applications. Weinheim: Wiley-VCH, 2018, 794 p. DOI: 10.1002/9783527693306
Si W., Zhou W., Liu X., Wang K., Liao Y., Yan F., Ji X. Recent advances in broadband photodetectors from infrared to terahertz. Micromachines, 2024, vol. 15, no. 4, a. 427. DOI: 10.3390/mi15040427
Bao F., Jape S., Schramka A., Wang J., McGraw T.E., Jacob Z. Why thermal images are blurry. Optics Express, 2024, vol. 32, no. 3, pp. 3852-3865 DOI: 10.1364/OE.506634
Lu C., Shi Y. Infrared and visible image fusion: a survey of current research status. Proceedings of the 5th International Conference on Computer Information and Big Data Applications (CIBDA’24). Wuhan: ACM, 2024, pp. 883-887. DOI: 10.1145/3671151.3671306
Stankevich S.A., Lubskyi M.S., Lysenko A.R. Long-wave infrared remote sensing data spatial resolution enhancement using modulation transfer function fusion approach. Proceedings of the International Conference on Information and Digital Technologies (IDT 2021). Žilina: IEEE, 2021, pp. 89-94. DOI: 10.1109/IDT52577.2021.9497630
Dulski R., Powalisz P., Kastek M., Trzaskawka P. Enhancing image quality produced by IR cameras. Proceedings of SPIE, 2010, vol. 7834, a. 783415. DOI: 10.1117/12.864979
Hou F., Zhang Y., Zhou Y., Zhang M., Lv B., Wu J. Review on infrared imaging technology. Sustainability, 2022, vol. 14, no. 18, a. 11161. DOI: 10.3390/su141811161
Li H., Wang S., Li S., Wang H., Wen S., Li F. Thermal infrared-image-enhancement algorithm based on multi-scale guided filtering. Fire, 2024, vol. 7, no. 6, a. 192. DOI: 10.3390/fire7060192
Li Y., Ma L., Yang S., Fu Q., Sun H., Wang C. Infrared image-enhancement algorithm for weak targets in complex backgrounds. Sensors, 2023, vol. 23, no. 13, a. 6215. DOI: 10.3390/s23136215
Lange J., Lange T. Optimal receive filter (Wiener filter). In: Fourier Transformation for Signal and System Description. Wiesbaden: Springer, 2022, pp. DOI: 10.1007/978-3-658-33817-6_9
Swartz B.T., Zheng H., Forcherio G.T., Valentine J. Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation. Science Advances, 2024, vol. 10, no. 6, a. eadk0024. DOI: 10.1126/sciadv.adk0024
Paul A., Sutradhar T., Bhattacharya P., Maity S. Adaptive clip-limit-based bi-histogram equalization algorithm for infrared image enhancement. Applied Optics, 2020, vol. 59, no. 28, pp. 9032-9041. DOI: 10.1364/AO.395848
Yang R., Chen L., Zhang L., Li Z., Lin Y., Wu Y. Image enhancement via special functions and its application for near infrared imaging. Global Challenges, 2023, vol. 7, no. 7, a. 2200179. DOI: 10.1002/gch2.202200179
Ma W., Wang K., Li J., Yang S.X., Li J., Song L., Li Q. Infrared and visible image fusion technology and application: a review. Sensors, 2023, vol. 23, no. 2, a. 599. DOI: 10.3390/s23020599
Ding W., Bi D., He L., Fan Z. Infrared and visible image fusion method based on sparse features. Infrared Physics & Technology, 2018, vol. 92, pp. 372-380. DOI: 10.1016/j.infrared.2018.06.029
Fu Q., Fu H., Wu Y. Infrared and visible image fusion based on mask and cross-dynamic fusion. Electronics, 2023, vol. 12, no. 20, a. 4342. DOI: 10.3390/electronics12204342
Donia E.A., El-Rabaie E.S.M., El-Samie F.E.A., Faragallah O.S., El-Hag N.A. Infrared image fusion for quality enhancement. Journal of Optics, 2023, vol. 52, pp. 658-664. DOI: 10.1007/s12596-022-01018-4
Sun C., Zhang C., Xiong N. Infrared and visible image fusion techniques based on deep learning: a review. Electronics, 2020, vol. 9, no. 12, a. 2162. DOI: 10.3390/electronics9122162
Ma J., Yu W., Liang P., Li C., Jiang J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Information Fusion, 2019, vol. 48, pp. 11-26. DOI: 10.1016/j.inffus.2018.09.004
Zhong S., Fu L., Zhang F. Infrared image enhancement using convolutional neural networks for auto-driving. Applied Sciences, 2023, vol. 13, no. 23, a. 12581. DOI: 10.3390/app132312581
Hu L., Hu L., Chen M. Edge-enhanced infrared image super-resolution reconstruction model under transformer. Scientific Reports, 2024, vol. 14, a. 15585. DOI: 10.1038/s41598-024-66302-8
Seshadrinathan K., Pappas T.N., Safranek R.J., Chen J., Wang Z., Sheikh H.R., Bovik A.C. Image quality assessment. In: Bovik A.C. (Ed.) The Essential Guide to Image Processing. Amsterdam: Academic Press, 2009, pp. 553-595. DOI: 10.1016/B978-0-12-374457-9.00021-4
Testolina M., Ebrahimi T. Review of subjective quality assessment methodologies and standards for compressed images evaluation. Proceedings of SPIE, 2021, vol. 11842, a. 118420Y. DOI: 10.1117/12.2597813
Tsai D.Y., Lee Y., Matsuyama E. Information entropy measure for evaluation of image quality. Journal of Digital Imaging, 2008, vol. 21, no. 3, pp. 338-347. DOI: 10.1007/s10278-007-9044-5
Ding Y., Wang S., Zhang D. Full-reference image quality assessment using statistical local correlation. Electronics Letters, 2014, vol. 50, no. 2, pp. 79-81. DOI: 10.1049/el.2013.3365
Varga D. No-reference image quality assessment with global statistical features. Journal of Imaging, 2021, vol. 7, no. 2, a. 29. DOI: 10.3390/jimaging7020029
Sara U., Akter M., Uddin M. Image quality assessment through FSIM, SSIM, MSE and PSNR – a comparative study. Journal of Computer and Communications, 2019, vol. 7, no. 3, pp. 8-18. DOI: 10.4236/jcc.2019.73002
Rubel A., Ieremeiev O., Lukin V., Fastowicz J., Okarma K. Combined no-reference image quality metrics for visual quality assessment optimized for remote sensing images. Applied Sciences, 2022, vol. 12, no. 4, a. 1986. DOI: 10.3390/app12041986
Bondzulic B., Petrovic V., Andric M., Pavlovic B. Gradient-based image quality assessment. Acta Polytechnica Hungarica, 2018, vol. 15, no. 4, pp. 83-99. DOI: 10.12700/APH.15.4.2018.4.5
Perfetto S., Wilder J., Walther D.B. Effects of spatial frequency filtering choices on the perception of filtered images. Vision, 2020, vol. 4, no. 2, a. 29. DOI: 10.3390/vision4020029
Leachtenauer J.C., Malila W., Irvine J., Colburn L., Salvaggio N. General image-quality equation for infrared imagery. Applied Optics, 2000, vol. 39, no. 26, pp. 4826-4828. DOI: 10.1364/AO.39.004826
Boreman G.D. Modulation Transfer Function in Optical and Electro-Optical Systems. Bellingham: SPIE Press, 2001, 120 p. DOI: 10.1117/3.419857
Gaber R., AbdElmgied A., Kareem A. Performance evaluation of infrared image enhancement techniques. International Journal of Advances in Computer Science and Technology, 2022, vol. 11, no. 2, pp. 1-11. DOI: 10.30534/ijacst/2022/011122022
Nagaiah K. Efficient performance analysis of image enhancement filtering methods using Matlab. International Journal of Innovative Technology and Exploring Engineering, 2024, vol. 13, no. 2, a. B977713020124. DOI: 10.35940/ijitee.B9777.13020124
Prasantha H.S., Shashidhara H.L., Murthy K.N.B. Fast computation of image scaling algorithms using frequency domain approach. In: Kumar M.A., Kumar T.V.S., Selvarani R. (Eds.) Advances in Intelligent Systems and Computing, vol. 174. New Delhi: Springer, 2013, pp. 201-208. DOI: 10.1007/978-81-322-0740-5_25
Stankevich S.A. Evaluation of the spatial resolution of digital aerospace image by the bidirectional point spread function parameterization. In: Shkarlet S., Morozov A., Palagin A. (Eds.) Advances in Intelligent Systems and Computing, vol.1265. Cham: Springer, 2021, pp. 317-327. DOI: 10.1007/978-3-030-58124-4_31
Liu C., Jia S., Wu H., Zeng D., Cheng F., Zhang S. A spatial-frequency domain associated image-optimization method for illumination-robust image matching. Sensors, 2020, vol. 20, no .22, a. 6489. DOI: 10.3390/s20226489
Liu Y., Paffenroth R.C. CNNs in the frequency domain for image super-resolution. Proceedings of SPIE, 2019, vol. 11321, a. 113210D. DOI: 10.1117/12.2539288
Pham M.T., Nguyen V.Q., Hoang C.D., Vo H.L., Phan D.K., Nguyen A.H. Efficient complex valued neural network with Fourier transform on image denoising. Proceedings of the 5th International Conference on Future Networks and Distributed Systems (ICFNDS’21). New York: ACM, 2022, pp. 48-57. DOI: 10.1145/3508072.3508081