Development of measurement methods in microwave and terahertz ranges of electromagnetic waves in Ukraine (review)
DOI:
https://doi.org/10.3103/S0735272724040034Keywords:
interferometer, holography, reflectometry, resonator, Q-factor, electrophysical parameters of materials, nondestructive testing, ultrashort pulses, subsurface probing, measurements of vibrations, parametric spectral analysis, artificial neural networksAbstract
The review analyzes Ukrainian scientists’ achievements in measurements in the microwave and terahertz ranges of electromagnetic waves. The application of ultrashort ultrawideband pulses for subsurface probing and object detection is considered. Such instrumentation tools have practical application in the long-wave part of the microwave range. In the centimeter and millimeter ranges, the method of synthesizing time signals based on multifrequency measurements is promising, and a pulse duration of 70 ps was achieved. The performed synthesis is based on the principle of the Fourier holography in the frequency-time domain, and methods of the parametric spectral analysis are used to obtain signals in the time domain. Some devices are based on the Michelson interferometer idea, which is implemented in a cross of oversized waveguides, the E-plane waveguide cross. Multiprobe meters made it possible to obtain values of the complex reflection coefficient. Such a meter implements the principle of holography on counter-propagating beams in a discrete version. Based on this approach, non-contact vibration meters have been practically implemented. Neural networks found applications for the calibration of detectors and the recognition and estimation of coordinates of objects. Resonance measurement methods are represented by various resonators, such as resonators with “whispering gallery” oscillations, combined open resonators with a short-circuited waveguide section, and coupled biconical resonators. Methods for the physical characterization of liquids in ultra-small volumes of the order of a microliter have been implemented. Such measurements are based on determining the resonant frequency and the quality factor of the mode of oscillations, the determination of which, generally, involves the need to use the fractional rational approximation. Resonance sensors have improved the means of near-field scanning microscopy. Measurements of material properties and nondestructive testing are based mainly on solving the appropriate inverse problem for layered structures. This review presents the research results in this field.
References
O. O. Drobakhin, “Microwave methods for monitoring parameters of dielectrics developed in Ukraine: overview,” in 2019 XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2019, pp. 6–10, doi: https://doi.org/10.1109/DIPED.2019.8882598.
S. Mizrakhy, “History and perspectives of THz components and circuits using oversize dielectric-lined waveguides,” in 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017, pp. 198–201, doi: https://doi.org/10.1109/UKRCON.2017.8100473.
A. A. Galuza, V. K. Kiseliov, I. V. Kolenov, A. I. Belyaeva, Y. M. Kuleshov, “Developments in THz-range ellipsometry: quasi-optical ellipsometer,” IEEE Trans. Terahertz Sci. Technol., vol. 6, no. 2, pp. 183–190, 2016, doi: https://doi.org/10.1109/TTHZ.2016.2525732.
V. I. Bezborodov, O. S. Kosiak, Y. M. Kuleshov, V. V. Yachin, “Differential phase sections based on form birefrigence in the Terahertz frequency range,” Telecommun. Radio Eng., vol. 74, no. 8, pp. 735–744, 2015, doi: https://doi.org/10.1615/TelecomRadEng.v74.i8.70.
R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light. North Holland, 1988.
Y. N. Kazantsev, O. A. Kharlashkin, “Waveguides of rectangular cross section with small losses,” Radio Eng. Electron. Phys., vol. 16, no. 6, pp. 1063–1065, 1971.
Y. N. Kazantsev, O. A. Kharlashkin, “Circular waveguides with a hollow dielectric channel,” Radio Eng. Electron. Phys., vol. 29, no. 8, pp. 79–88, 1984.
F. Dubrovka, E. Saratov, “Broadband transition from coaxial line to circular waveguide,” Radioelectron. Commun. Syst., vol. 66, no. 7, pp. 380–384, 2023, doi: https://doi.org/10.3103/S073527272210003X.
V. I. Bezborodov et al., “Sub-terahertz quasi-optical reflectometer for CFRP surface inspection,” Adv. Mater. Res., vol. 664, pp. 547–550, 2013, doi: https://doi.org/10.4028/www.scientific.net/AMR.664.547.
P. K. Nesterov, V. V. Yachin, T. L. Zinenko, Y. M. Kuleshov, “Characterization of CFRP thermal degradation by the polarization-frequency reflectometry method in subterahertz frequency range,” IEEE Trans. Terahertz Sci. Technol., vol. 6, no. 1, pp. 91–98, 2016, doi: https://doi.org/10.1109/TTHZ.2015.2503880.
V. K. Kiselyev, T. M. Kushta, “Method for radar cross section measurements in millimeter and submillimeter wave regions,” Int. J. Infrared Millim. Waves, vol. 16, no. 6, pp. 1159–1165, 1995, doi: https://doi.org/10.1007/BF02068284.
V. K. Kiseliov, T. M. Kushta, “Ray representation of the electromagnetic field in a circular hollow dielectric waveguide used as a facility for scattering measurements,” IEEE Trans. Antennas Propag., vol. 46, no. 7, pp. 1116–1117, 1998, doi: https://doi.org/10.1109/8.704817.
V. K. Kiseliov, T. M. Kushta, “A spherical scatterer inside a circular hollow dielectric waveguide,” Int. J. Infrared Millim. Waves, vol. 18, no. 1, pp. 151–163, 1997, doi: https://doi.org/10.1007/BF02677902.
V. K. Kiseliov, T. M. Kushta, P. K. Nesterov, “Quasi-optical waveguide modeling method and microcompact scattering range for the millimeter and submillimeter wave bands,” IEEE Trans. Antennas Propag., vol. 49, no. 5, pp. 784–792, 2001, doi: https://doi.org/10.1109/8.929633.
S. Mizrakhy, P. Nesterov, “Investigation of polarization back-scattering characteristics of metal cube in sub-THz frequency range by the quasi-optical waveguide modeling method,” in 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), 2014, pp. 1–4, doi: https://doi.org/10.1109/MIKON.2014.6899860.
V. V. Alekseev, O. O. Drobakhin, Y. V. Kondratyev, D. Y. Saltykov, “Microwave introscopy using multifrequency measurements & transversal scan,” IEEE Aerosp. Electron. Syst. Mag., vol. 21, no. 2, pp. 24–26, 2006, doi: https://doi.org/10.1109/MAES.2006.1599139.
O. O. Drobakhin, V. V. Alekseev, M. V. Andreev, Y. V. Kondratyev, D. Y. Saltykov, “Multifrequency near-zone radar of 6-mm wave range with combination of pulse synthesis and transversal scanning,” Telecommun. Radio Eng., vol. 66, no. 10, pp. 855–861, 2007, doi: https://doi.org/10.1615/TelecomRadEng.v66.i10.10.
V. V. Alekseev, O. O. Drobakhin, S. I. Pridatko, D. Y. Saltykov, “Horn radiation properties for synthesized pulse signals in 6-mm wavelength range,” Telecommun. Radio Eng., vol. 66, no. 11, pp. 973–981, 2007, doi: https://doi.org/10.1615/TelecomRadEng.v66.i11.30.
O. O. Drobakhin, G. G. Sherstyuk, “Recognition multifrequency microwave images of simple objects behind dielectric wall using neural networks and correlation technique,” in 2013 XVIIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2013, uri: https://ieeexplore.ieee.org/document/6653850.
O. O. Drobakhin, Y. V. Kondrat’yev, L. A. Filinsky, “Foam absorbing material properties in range of 8-12 GHz,” in 4th International Conference on Antenna Theory and Techniques (Cat. No.03EX699), 2003, vol. 2, pp. 684–686, doi: https://doi.org/10.1109/ICATT.2003.1238837.
V. V. Alekseev, O. O. Drobakhin, L. A. Filinskyy, “Foams absorbing material properties in range of 38-52 GHz,” in 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, 2006, pp. 253–255, doi: https://doi.org/10.1109/UWBUS.2006.307220.
O. O. Drobakhin, V. V. Alekseev, “Negative group delay phenomenon in some artificial structures,” in The 40th European Microwave Conference, 2010, doi: https://doi.org/10.23919/EUMC.2010.5616944.
V. F. Borulko, O. O. Drobakhin, D. V. Sidorov, “Pulse shape transformation under Bragg structures irradiation,” Telecommun. Radio Eng., vol. 73, no. 2, pp. 95–109, 2014, doi: https://doi.org/10.1615/TelecomRadEng.v73.i2.10.
O. O. Drobakhin, A. D. Klimenko, “Obtaining the antenna directional patterns at antenna ranges with low echo,” Izv. VUZ Radioelektronika, vol. 41, no. 1, pp. 20–27, 1998.
G. P. Pochanin, O. A. Orlenko, V. P. Ruban, V. G. Korzh, M. V. Andreev, O. O. Drobakhin, “Antenna pattern measurements: UWB impulse and multifrequency signals comparison,” in 2017 XI International Conference on Antenna Theory and Techniques (ICATT), 2017, pp. 36–39, doi: https://doi.org/10.1109/ICATT.2017.7972581.
V. M. Petrechenko, O. G. Pochanin, G. P. Pochanin, V. P. Ruban, “Automated system for UWB antennas characteristics measurement,” Telecommun. Radio Eng., vol. 64, no. 9, pp. 713–726, 2005, doi: https://doi.org/10.1615/TelecomRadEng.v64.i9.20.
O. O. Drobakhin, “Reflectometer,” SU Certificate of authorship No 1483392, 1989.
V. Dzhala, A. Synyavskyy, “Microwave subsurface imaging of inhomogeneous dielectrics and composite structures,” in Proc. XXIInd Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2017, pp. 174–177.
O. O. Drobakhin, V. A. Karlov, “Holographic approach to microwave measurement,” in Proc. of 16-th Int. Symp. on Electromagnetic Theory, 1998, pp. 109–111.
G. F. Engen, “The six-port reflectometer: an alternative network analyzer,” IEEE Trans. Microw. Theory Tech., vol. 25, no. 12, pp. 1075–1080, 1977, doi: https://doi.org/10.1109/TMTT.1977.1129277.
M. V. Andreev, O. O. Drobakhin, D. Y. Saltykov, “Techniques of measuring reflectance in free space in the microwave range,” in 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), 2016, pp. 1–4, doi: https://doi.org/10.1109/MSMW.2016.7538213.
O. O. Drobakhin, “A novel approach to six-port reflectometer analysis,” in 2015 International Conference on Antenna Theory and Techniques (ICATT), 2015, pp. 1–3, doi: https://doi.org/10.1109/ICATT.2015.7136874.
O. O. Drobakhin, “Proposals to a vector reflectometer design in the millimeter and submillimeter waverange,” in Proc. of 4 Int. Kharkov Conf. on Physics and Engineering of Millimeter and Submillimeter Waves, 2001, pp. 852–853.
G. Borgioli et al., “A hologram reconstruction algorithm for landmine recognition and classification based on microwave holographic radar data,” in 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 2018, pp. 1938–1944, doi: https://doi.org/10.23919/PIERS.2018.8597707.
O. A. Pryshchenko et al., “Implementation of an artificial intelligence approach to GPR systems for landmine detection,” Remote Sens., vol. 14, no. 17, p. 4421, 2022, doi: https://doi.org/10.3390/rs14174421.
G. P. Pochanin et al., “Measurement of coordinates for a cylindrical target using times of flight from a 1-transmitter and 4-receiver UWB antenna system,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1363–1372, 2020, doi: https://doi.org/10.1109/TGRS.2019.2946064.
G. P. Pochanin et al., “Advances in short-range distance and permittivity ground-penetrating radar measurements for road surface surveying,” in Advanced Ultrawideband Radar, J. D. Taylor, Ed. Boca Raton: CRC Press, 2016, pp. 19–64.
O. Dumin, O. Pryshchenko, V. Plakhtii, G. Pochanin, “Dielectric object subsurface survey by ultrawideband radar and ANN,” in 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2020, pp. 13–18, doi: https://doi.org/10.1109/DIPED49797.2020.9273400.
T. N. Ogurtsova, G. P. Pochanin, P. V. Kholod, “The effective magnetic permeability of ferrite rods M400HH in the frequency range of 10–100 MHz,” in 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 2016, pp. 139–141, doi: https://doi.org/10.1109/UWBUSIS.2016.7724171.
T. M. Ogurtsova, G. P. Pochanin, P. V. Kholod, O. M. Dumin, S. L. Berdnik, “Patent on useful model UA 126410 MPC G01R 33/12. Method for measuring the frequency dependence of magnetic permeability of ferrite rods,” No. u201708915, 2018.
G. P. Pochanin, V. P. Ruban, “Stroboscopic method of signal registration,” Patent of Ukraine no. 96241, MPC H04В 1/06. (2006.01), 2011.
V. P. Ruban, G. P. Pochanin, “Sampling duration for noisy signal conversion,” in 2010 5th International Confernce on Ultrawideband and Ultrashort Impulse Signals, 2010, pp. 275–277, doi: https://doi.org/10.1109/UWBUSIS.2010.5609116.
Y. N. Denysiuk, “On mapping of optical properties of objects in the wave front of scattered radiation,” DAN SSSR, vol. 44, pp. 1275–1278, 1962.
M. V. Andreev, O. O. Drobakhin, D. Y. Saltykov, “Complex reflection coefficient determination via digital spectral analysis of multiprobe reflectometer output signals,” in 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017, pp. 170–175, doi: https://doi.org/10.1109/UKRCON.2017.8100468.
O. O. Drobakhin, “Prony’s-method identification of parameters of model which is sum of exponential functions,” Optoelectron. Instrumentation, Data Process., no. 4, pp. 37–42, 1989.
M. V. Andreev, V. F. Borul’ko, O. O. Drobakhin, “Resolvability of spectrum analysis with the help of the method of maximum likelihood,” Izv. VUZ Radioelektronika, vol. 41, no. 1, pp. 3–11, 1998.
Y. V. Belichenko, O. O. Drobakhin, “Determination of reflectivity in free space using the method of spectrum analysis,” Izv. VUZ Radioelektronika, vol. 41, no. 1, pp. 33–40, 1998.
A. V. Doronin, N. B. Gorev, I. F. Kodzhespirova, E. N. Privalov, “Displacement measurement using a two-probe implementation of microwave interferometry,” Prog. Electromagn. Res. C, vol. 32, pp. 245–258, 2012, doi: https://doi.org/10.2528/PIERC12071805.
O. V. Pylypenko, N. B. Gorev, A. V. Doronin, I. F. Kodzhespirova, “Рhase ambiguity resolution in relative displacement measurement by microwave interferometry,” Tech. Mech., vol. 2017, no. 2, pp. 3–11, 2017, doi: https://doi.org/10.15407/itm2017.02.003.
O. V. Pylypenko, A. V. Doronin, N. B. Gorev, I. F. Kodzhespirova, “Experimental verification of a two-probe implemetration of microwave interferometry for displacement measurement,” Tech. Mech., vol. 2018, no. 1, pp. 5–12, 2018, doi: https://doi.org/10.15407/itm2018.01.005.
A. V. Doronin, N. B. Gorev, I. F. Kodzhespirova, E. N. Privalov, “A way to improve the accuracy of displacement measurement by a two-probe implementation of microwave interferometry,” Prog. Electromagn. Res. M, vol. 30, pp. 105–116, 2013, doi: https://doi.org/10.2528/PIERM13020504.
O. V. Pylypenko, A. V. Doronin, N. B. Gorev, I. F. Kodzhespirova, “Two-probe displacement measurement technique accounting for the antenna reflection coeficient,” in 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2017, pp. 197–200, doi: https://doi.org/10.1109/DIPED.2017.8100600.
M. V. Andreev, O. O. Drobakhin, D. Y. Saltykov, N. B. Gorev, I. F. Kodzhespirova, “Three-probe microwave interferometry for measuring displacement of mechanical objects with account for antenna reflectivity,” Radioelectron. Commun. Syst., vol. 65, no. 4, pp. 177–185, 2022, doi: https://doi.org/10.3103/S0735272722040021.
A. Maslovskiy, M. Legenkiy, “Experimental measuring of bright spots on complex shape object surface with decomposition method,” in 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 2018, pp. 181–184, doi: https://doi.org/10.1109/UWBUSIS.2018.8520217.
A. V. Brovenko, A. A. Vertiy, N. P. Melezhik, P. N. Melezhik, A. Y. Poyedinchuk, “One-dimensional inverse problems of electromagnetic sounding of stratified dielectric media,” Telecommun. Radio Eng., vol. 75, no. 6, pp. 477–487, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i6.10.
M. V. Andreev, V. F. Borul’ko, O. O. Drobakhin, “One-dimensional inverse problem solution for multilayered dielectric structures using least-square spectral estimation method,” in Proc. 1995 Int. Symp. on Electromagnetic Theory, 1995, pp. 148–150.
A. A. Vertiy, P. N. Melezhik, A. Y. Poyedinchuk, S. V. Mizrakhy, P. K. Nesterov, “Dielectric permittivity profile reconsctruction in microwave band for layered dielectric slab located in the standard metal waveguide,” in 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), 2018, pp. 217–220, doi: https://doi.org/10.1109/MMET.2018.8460252.
M. S. Antyufeyeva, D. O. Batrakov, A. G. Batrakova, A. V. Antyufeyev, “Comparative study of the Goldfarb iterative and the genetic algorithm methods for solving inverse problems,” in 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), 2018, pp. 221–225, doi: https://doi.org/10.1109/MMET.2018.8460316.
S. G. Alexin, O. O. Drobakhin, O. O. Plakhotya, “Dielectric slab parameters estimation using ’quasiduration’-based objective function minimization with genetic algorithm,” in 2008 13th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2008, pp. 53–57, doi: https://doi.org/10.1109/DIPED.2008.4671801.
S. G. Alexin, O. O. Drobakhin, V. O. Tkachenko, “Modification of the Newton-Kantorovich iteration procedure for piecewise-constant real permittivity profile reconstruction,” Telecommun. Radio Eng., vol. 68, no. 16, pp. 1411–1421, 2009, doi: https://doi.org/10.1615/TelecomRadEng.v68.i16.20.
S. G. Alexin, O. O. Drobakhin, “Reconstruction of permittivity profile of stratified lossy dielectric using Newton-Kantorovich iterative scheme,” Telecommun. Radio Eng., vol. 69, no. 9, pp. 815–837, 2010, doi: https://doi.org/10.1615/TelecomRadEng.v69.i9.60.
S. G. Alexin, O. S. Antropov, O. O. Drobakhin, “Comparison of the methods of 1-D permittivity profile reconstruction: real measurement data processing,” Telecommun. Radio Eng., vol. 69, no. 12, pp. 1121–1127, 2010, doi: https://doi.org/10.1615/TelecomRadEng.v69.i12.90.
Z. Eremenko, V. Skresanov, “High loss liquids permittivity measurement using millimeter wave differential dielectrometer,” in The 40th European Microwave Conference, 2010, doi: https://doi.org/10.23919/EUMC.2010.5617157.
N. T. Cherpak, A. A. Lavrinovich, A. I. Gubin, “Microwave reflectivity of the HTS oblique plate in a waveguide,” Telecommun. Radio Eng., vol. 53, no. 11, pp. 39–41, 1999, doi: https://doi.org/10.1615/TelecomRadEng.v53.i11.70.
N. T. Cherpak, A. I. Gubin, A. A. Lavrinovich, “Microwave reflectivity of HTS film - dielectric substrate structure at arbitrary incidence angles,” Telecommun. Radio Eng., vol. 55, no. 3, p. 9, 2001, doi: https://doi.org/10.1615/TelecomRadEng.v55.i3.120.
A. I. Gubin, A. A. Lavrinovich, N. T. Cherpak, “Microwave-band reflection coefficient of high-temperature superconductor specimens in E-plane waveguide structures,” Tech. Phys. Lett., vol. 27, no. 4, pp. 336–337, 2001, doi: https://doi.org/10.1134/1.1370219.
Y. I. Lepikh, Y. O. Hordiienko, S. V. Dziadevich, Development of microelectronic sensors of the new generation for intelligent systems, [in Ukrainian]. Odesa: Astroprint, 2010.
Y. I. Lepikh, Y. O. Hordiienko, S. V. Dziadevich, Intelligent measuring systems based on microelectronic sensors of the new generation, [in Ukrainian]. Odesa: Astroprint, 2011.
I. N. Bondarenko, A. V. Galich, “Measuring resonant transducers on the basis of microstrip structures,” Telecommun. Radio Eng., vol. 74, no. 9, pp. 807–814, 2015, doi: https://doi.org/10.1615/TelecomRadEng.v74.i9.60.
I. N. Bondarenko, Y. S. Vasyliev, “Features of formation of information signals of resonant measuring converters with aperture and probe sensing elements,” Radiotekhnika, no. 194, pp. 155–160, 2018, doi: https://doi.org/10.30837/rt.2018.3.194.21.
M. V. Andreev, O. O. Drobakhin, Y. N. Privalov, D. Y. Saltykov, “Measurement of dielectric material properties using coupled biconical resonators,” Telecommun. Radio Eng., vol. 73, no. 11, pp. 1017–1032, 2014, doi: https://doi.org/10.1615/TelecomRadEng.v73.i11.70.
O. O. Drobakhin, P. I. Zabolotnyy, Y. N. Privalov, “Taking into account the impact of coupling elements on the resonance phenomena in biconical resonators,” Radioelectron. Commun. Syst., vol. 53, no. 7, pp. 389–394, 2010, doi: https://doi.org/10.3103/S0735272710070071.
O. O. Drobakhin, Y. N. Privalov, D. Y. Saltykov, “Open-ended waveguide cutoff resonators for monitoring dielectrics parameters of gases,” Telecommun. Radio Eng., vol. 72, no. 7, pp. 627–640, 2013, doi: https://doi.org/10.1615/TelecomRadEng.v72.i7.60.
I. K. Kuzmichev, P. N. Melezhik, A. Y. Poyedinchuk, “An open resonator for physical studies,” Int. J. Infrared Millim. Waves, vol. 27, no. 6, pp. 857–869, 2007, doi: https://doi.org/10.1007/s10762-006-9122-7.
O. Y. Kyrychenko, Y. V. Prokopenko, Y. F. Filipov, M. T. Cherpak, Quasioptycal solid-state resonators, [in Ukrainian]. Kyiv: Naukova Dumka, 2008.
A. A. Barannik, S. A. Bunyaev, N. T. Cherpak, Y. V. Prokopenko, A. A. Kharchenko, S. A. Vitusevich, “Whispering gallery mode hemisphere dielectric resonators with impedance plane,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2682–2691, 2010, doi: https://doi.org/10.1109/TMTT.2010.2065870.
N. Cherpak, A. Barannik, Y. Filipov, Y. Prokopenko, S. Vitusevich, “Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasi-optical resonator,” IEEE Trans. Appiled Supercond., vol. 13, no. 2, pp. 3570–3573, 2003, doi: https://doi.org/10.1109/TASC.2003.812400.
A. A. Barannik, N. T. Cherpak, K. I. Torohtiy, S. A. Vitusevich, “Slotted-disk sapphire quasi-optical resonator with conducting endplates,” in 2011 41st European Microwave Conference, 2011, doi: https://doi.org/10.23919/EuMC.2011.6101926.
A. A. Barannik, N. T. Cherpak, A. I. Gubin, I. A. Protsenko, S. A. Vitusevich, “WGM resonators with microfluidic channel for sub-mm wave characterization of biological liquids,” in 2016 German Microwave Conference (GeMiC), 2016, pp. 15–18, doi: https://doi.org/10.1109/GEMIC.2016.7461544.
A. A. Barannik, S. A. Vitusevich, A. I. Gubin, I. А. Protsenko, N. T. Cherpak, “The measuring cell based on the quartz quazioptical resonator for research on dielectric liquids in the sub-THz range,” Telecommun. Radio Eng., vol. 75, no. 17, pp. 1583–1590, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i17.60.
A. V. Dormidontov, Y. V. Prokopenko, “Influence of the refractivity and temperature of the ambient medium on the eigenfrequencies of quasioptical cylindrical dielectric resonators,” Radiophys. Quantum Electron., vol. 56, no. 6, pp. 385–397, 2013, doi: https://doi.org/10.1007/s11141-013-9442-0.
D. M. Pozar, Microwave Engineering, 4th ed. New Jersey: Wiley and Sons, 2011, uri: https://www.wiley.com/en-us/Microwave+Engineering%2C+4th+Edition-p-9780470631553.
M. V. Andreev, O. O. Drobakhin, D. Y. Saltykov, “Determination of the resonance frequency and the Q-factor of a half-disk dielectric resonator using fractional rational approximation,” Radio Phys. Radio Astron., vol. 18, no. 4, pp. 362–372, 2013, uri: http://dspace.nbuv.gov.ua/handle/123456789/100213.
M. V. Andreev, O. O. Drobakhin, D. Y. Saltykov, “Determination of parameters of closely spaced resonances using fractional-rational approximation of resonator frequency response,” in 2014 International Conference on Mathematical Methods in Electromagnetic Theory, 2014, pp. 127–130, doi: https://doi.org/10.1109/MMET.2014.6928710.
M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics, vol. 11, no. 9, pp. 543–554, 2017, doi: https://doi.org/10.1038/nphoton.2017.142.
F. S. Crawford, Waves : Berkeley Physics Course. New York: McGraw-Hill, 1968.
