Development of compact Cherenkov devices with sheet electron beams in sub-THz and THz frequency ranges (review)
DOI:
https://doi.org/10.3103/S073527272403004XKeywords:
beam-wave interaction, clinotron, backward wave oscillator, travelling wave tube, Cherenkov vacuum electron device, slow-wave circuit, bi-periodic grating, oversized waveguide, T-junction, S-matrix, mode transformation, hybrid bulk-surface mode, leaky wave, Smith-Purcell radiation, spoof surface plasmon polariton, THz radiationAbstract
Results of both theoretical and experimental studies of the beam-wave interaction in compact vacuum electron devices of the clinotron type are presented and discussed. Several modifications to the interaction circuit and radiation output were proposed to improve the performance of clinotron tubes in the sub-THz and THz ranges. These modifications include optimization of the conventional clinotron design to enhance beam-wave interaction and ensure single-mode output radiation in an oversized cavity. Additionally, a new design approach was considered for the THz Cherenkov oscillators and amplifiers, which are based on the excitation of hybrid bulk-surface modes in circuits containing bi-periodic gratings. Theoretical studies were conducted using both “cold” and “hot” simulations with in-house and commercial software. The typical performance of experimental tubes operating in the frequency range of 90 GHz to 410 GHz is presented and compared with the theoretical predictions. Plans for future studies and the developments of THz tubes are also outlined.
References
A. Leitenstorfer et al., “The 2023 terahertz science and technology roadmap,” J. Phys. D Appl. Phys., vol. 56, no. 22, p. 223001, 2023, doi: https://doi.org/10.1088/1361-6463/acbe4c.
X. Chen et al., “Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications,” Chem. Phys. Rev., vol. 3, no. 1, 2022, doi: https://doi.org/10.1063/5.0068979.
X. Ding, A. I. Hernandez-Serrano, J. J. Young, E. Pickwell-MacPherson, “Variation of skin hydration profile with biophysical factors and lifestyle revealed by in vivo terahertz sensing,” Biomed. Opt. Express, vol. 15, no. 9, p. 5180, 2024, doi: https://doi.org/10.1364/BOE.527731.
C. M. Armstrong et al., “Frontiers in the application of RF vacuum electronics,” IEEE Trans. Electron Devices, vol. 70, no. 6, pp. 2643–2655, 2023, doi: https://doi.org/10.1109/TED.2023.3239841.
M. Blank, K. L. Felch, “Millimeter-wave sources for DNP-NMR,” eMagRes, vol. 7, no. 4, pp. 155–166, 2018, doi: https://doi.org/10.1002/9780470034590.emrstm1582.
M. Thumm, “State-of-the-art of high-power gyro-devices and free electron masers,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 1, pp. 1–140, 2020, doi: https://doi.org/10.1007/s10762-019-00631-y.
S. Sabchevski, M. Glyavin, S. Mitsudo, Y. Tatematsu, T. Idehara, “Novel and emerging applications of the gyrotrons worldwide: current status and prospects,” J. Infrared, Millimeter, Terahertz Waves, vol. 42, no. 7, pp. 715–741, 2021, doi: https://doi.org/10.1007/s10762-021-00804-8.
T. Idehara, S. P. Sabchevski, M. Glyavin, S. Mitsudo, “The gyrotrons as promising radiation sources for THz sensing and imaging,” Appl. Sci., vol. 10, no. 3, p. 980, 2020, doi: https://doi.org/10.3390/app10030980.
G. A. Komandin et al., “BWO generators for terahertz dielectric measurements,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 4, pp. 440–444, 2013, doi: https://doi.org/10.1109/TTHZ.2013.2255914.
G. Y. Levin, A. I. Borodkin, A. Y. Kirichenko, A. Y. Usikov, S. A. Churilova, The Clinotron, [in Russian]. Kiev: Naukova Dumka, 1992.
A. Likhachev et al., “Compact radiation module for THz spectroscopy using 300 GHz continuous-wave clinotron,” Rev. Sci. Instruments, vol. 90, no. 3, 2019, doi: https://doi.org/10.1063/1.5064796.
V. P. Shestopalov, Diffraction Radiation Generators, [in Russian]. Kiev: Naukova Dumka, 1991.
V. L. Bratman, B. S. Dumesh, A. E. Fedotov, P. B. Makhalov, B. Z. Movshevich, F. S. Rusin, “Terahertz orotrons and oromultipliers,” IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1466–1471, 2010, doi: https://doi.org/10.1109/TPS.2010.2041367.
K. Lukin, E. Khutoryan, A. Kuleshov, S. Ponomarenko, M. Sattorov, G.-S. Park, “THz oscillators based on Cherenkov, Smith-Purcell and hybrid radiation effects,” in Advances in Terahertz Source Technologies, New York: Jenny Stanford Publishing, 2024, pp. 487–523.
S. S. Ponomarenko et al., “Spectral characteristics of THz CW clinotrons,” IEEE Trans. Electron Devices, vol. 67, no. 12, pp. 5766–5770, 2020, doi: https://doi.org/10.1109/TED.2020.3032940.
A. F. Krupnov, “Phase lock-in of MM/SUBMM backward wave oscillators: development, evolution, and applications,” Int. J. Infrared Millim. Waves, vol. 22, pp. 1–18, 2001, doi: https://doi.org/10.1023/A:1010744901186.
E. M. Khutoryan et al., “Simultaneous stabilization of gyrotron frequency and power by PID double feedback control on the acceleration and anode voltages,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 7, pp. 813–823, 2017, doi: https://doi.org/10.1007/s10762-017-0374-1.
A. Likhachev et al., “Supply voltage control for guaranteed performance of compact terahertz vacuum electron devices,” Rev. Sci. Instruments, vol. 92, no. 12, 2021, doi: https://doi.org/10.1063/5.0070533.
E. N. Odarenko, A. A. Shmal’ko, “Nonlinear theory of O-type microwave oscillators with nonuniform dc magnetic field (2-D model),” Radiotekhnika i Elektron., vol. 39, no. 4, pp. 653–661, 1994.
V. V. Zavertanniy et al., “Magnetic focusing system for intense electron beams of submillimeter clinotrons,” Appl. nonlinear Dyn. Izv. VUZ, vol. 20, no. 5, 2012, doi: https://doi.org/10.18500/0869-6632-2012-20-5-112-120.
S. S. Ponomarenko et al., “400-GHz continuous-wave clinotron oscillator,” IEEE Trans. Plasma Sci., vol. 41, no. 1, pp. 82–86, 2013, doi: https://doi.org/10.1109/TPS.2012.2226247.
K. Schunemann, D. M. Vavriv, “Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam,” IEEE Trans. Electron Devices, vol. 46, no. 11, pp. 2245–2252, 1999, doi: https://doi.org/10.1109/16.796302.
V. S. Andrushkevich, Y. G. Gamayunov, E. V. Patrusheva, “A nonlinear clinotron theory,” J. Commun. Technol. Electron., vol. 55, no. 3, pp. 330–336, 2010, doi: https://doi.org/10.1134/S1064226910030125.
S. Vlasenko et al., “Radiation output of the 330 GHz continuous-wave clinotron oscillator with modified cavity,” IEEE Trans. Electron Devices, vol. 71, no. 6, pp. 3940–3944, 2024, doi: https://doi.org/10.1109/TED.2024.3394796.
Y. S. Kovshov et al., “Effect of mode transformation in THz clinotron,” J. Infrared, Millimeter, Terahertz Waves, vol. 39, no. 11, pp. 1055–1064, 2018, doi: https://doi.org/10.1007/s10762-018-0534-y.
S. O. Steshenko, “Generalization of the mode-matching technique to the problems of scattering by semi-infinite slow-wave structures,” Radiophys. Electron., vol. 25, no. 4, pp. 10–17, 2020, uri: http://jnas.nbuv.gov.ua/uk/article/UJRN-0001183349.
E. Khutoryan, A. Kuleshov, S. Ponomarenko, K. Lukin, Y. Tatematsu, M. Tani, “Efficient excitation of hybrid modes in a THz clinotron,” J. Infrared, Millimeter, Terahertz Waves, vol. 42, no. 6, pp. 671–683, 2021, doi: https://doi.org/10.1007/s10762-021-00800-y.
E. M. Khutoryan, A. N. Kuleshov, S. S. Ponomarenko, K. A. Lukin, Y. Tatematsu, M. Tani, “Hybrid bulk-surface modes excited by a sheet electron beam in THz Cherenkov oscillator,” IEEE Trans. Electron Devices, vol. 69, no. 6, pp. 3407–3412, 2022, doi: https://doi.org/10.1109/TED.2022.3168526.
J. Feng et al., “Fabrication of a 0.346-THz BWO for plasma diagnostics,” IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2156–2163, 2018, doi: https://doi.org/10.1109/TED.2018.2821683.
A. Srivastava, S. Penmetsa, L. Christie, K. N. Bhat, “Electromagnetic design of a 220 GHz BWO with experimental study of micro-fabricated folded waveguide structure,” J. Electromagn. Waves Appl., vol. 33, no. 14, pp. 1860–1873, 2019, doi: https://doi.org/10.1080/09205071.2019.1645744.
C. Paoloni, D. Gamzina, R. Letizia, Y. Zheng, N. C. Luhmann, “Millimeter wave traveling wave tubes for the 21st century,” J. Electromagn. Waves Appl., vol. 35, no. 5, pp. 567–603, 2021, doi: https://doi.org/10.1080/09205071.2020.1848643.
D. M. Vavriv, “Theory of the clinotron,” Telecommun. Radio Eng., vol. 67, no. 9, pp. 757–781, 2008, doi: https://doi.org/10.1615/TelecomRadEng.v67.i9.10.
C. Y. Levin, A. Y. Kirichenko, A. I. Borodkin, S. A. Churilova, A. Y. Usikov, “The clinotron,” in 22nd European Microwave Conference, 1992, 1992, pp. 603–607, doi: https://doi.org/10.1109/EUMA.1992.335771.
B. P. Yefimov, M. V. Milcho, “O-type millimeter-wave band generator of amplitude-modulated oscillations with resonance interaction space,” Int. J. Infrared Millim. Waves, vol. 18, no. 9, pp. 1681–1687, 1997, doi: https://doi.org/10.1007/BF02678279.
S. Ponomarenko et al., “Operational characteristics of the 175-GHz continuous-wave clinotron,” IEEE Trans. Electron Devices, vol. 70, no. 11, pp. 5921–5925, 2023, doi: https://doi.org/10.1109/TED.2023.3316157.
V. D. Yeryomka, O. F. Pishko, “Klynotronic effect in vacuum sources of terahertz electromagnetic oscillations,” Telecommun. Radio Eng., vol. 78, no. 18, pp. 1601–1636, 2019, doi: https://doi.org/10.1615/TelecomRadEng.v78.i18.10.
M. V. Mil’cho, I. V. Lopatin, V. V. Zavertanny, A. S. Tishchenko, K. Ilyenko, “CW clinotrons for the short-wave part of the millimeter waveband,” in IEEE International Vacuum Electronics Conference, 2014, pp. 71–72, doi: https://doi.org/10.1109/IVEC.2014.6857495.
Y. S. Kovshov, S. S. Ponomarenko, S. A. Kishko, E. M. Khutoryan, A. N. Kuleshov, “Numerical simulation and experimental study of sub-THz and THz CW clinotron oscillators,” IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2177–2182, 2018, doi: https://doi.org/10.1109/TED.2018.2792258.
A. A. Likhachev et al., “Effect of electron beam velocity spread in a clinotron,” IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1540–1544, 2019, doi: https://doi.org/10.1109/TED.2019.2891547.
“Poisson Superfish 7.1,” Software. https://poisson-superfish.software.informer.com/7.1/.
CST, “GPU Computing Guide,” CST Studio Suite R2022, 2021. .
Y. S. Kovshov et al., “High frequency ohmic losses in terahertz frequency range CW klynotrons,” Telecommun. Radio Eng., vol. 76, no. 10, pp. 929–940, 2017, doi: https://doi.org/10.1615/TelecomRadEng.v76.i10.90.
Y. Y. Lysenko, O. F. Pishko, V. G. Chumak, S. A. Churilova, “Resonance line Q-factor of millimeter-wave clinotron,” Radio Phys. Radio Astron., vol. 6, no. 3, pp. 317–322, 2001, uri: http://dspace.nbuv.gov.ua/handle/123456789/122283.
E. M. Khutoryan et al., “Excitation of hybrid space-surface waves in clinotrons with non-uniform grating,” J. Infrared, Millimeter, Terahertz Waves, vol. 39, no. 3, pp. 236–249, 2018, doi: https://doi.org/10.1007/s10762-017-0453-3.
T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett., vol. 81, no. 3, pp. 665–668, 1998, doi: https://doi.org/10.1103/PhysRevLett.81.665.
A. T. ATK, MAGIC 3.2.0 Help Manual. Newington, VA, USA: Alliant Techsystems ATK, 2011.
V. Petrov, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, Y. Koucheryavy, M. Juntti, “Last meter indoor terahertz wireless access: performance insights and implementation roadmap,” IEEE Commun. Mag., vol. 56, no. 6, pp. 158–165, 2018, doi: https://doi.org/10.1109/MCOM.2018.1600300.
P. Rodriguez-Vazquez, J. Grzyb, B. Heinemann, U. R. Pfeiffer, “A 16-QAM 100-Gb/s 1-M wireless link with an EVM of 17% at 230 GHz in an SiGe technology,” IEEE Microw. Wirel. Components Lett., vol. 29, no. 4, pp. 297–299, 2019, doi: https://doi.org/10.1109/LMWC.2019.2899487.
Y. Zheng, S. Qiu, B. Griffin, R. Kowalczyk, N. C. Luhmann, D. Gamzina, “Compact E-band sheet beam folded waveguide traveling wave tube for high data rate communication,” IEEE Trans. Electron Devices, vol. 70, no. 5, pp. 2508–2513, 2023, doi: https://doi.org/10.1109/TED.2023.3252494.
S. S. Ponomarenko et al., “Traveling-wave amplification in a circuit with nonuniform grating,” IEEE Trans. Electron Devices, vol. 68, no. 10, pp. 5232–5237, 2021, doi: https://doi.org/10.1109/TED.2021.3105951.
V. P. Taranenko, A. A. Mikhin, “Investigation of methods for the suppression of self-oscillation in O-type traveling-wave tubes,” Izv. Vyss. Uchebnykh Zaved. Radioelektronika, vol. 17, no. 11, pp. 5–17, 1974.
