Generation of electromagnetic waves based on interaction effects between moving charged particles and fields excited by them eigenmodes of waveguide and resonator structures (review)

Authors

  • Yuriy Prokopenko O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine; V. N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-1783-1471
  • Yuriy Averkov O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-1169-9393
  • Anatoliy Dormidontov O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.3103/S0735272724030038

Keywords:

interaction of a charged particle or beam with electrodynamic structure, Vavilov–Cherenkov effect, anomalous Doppler effect, SHF and EHF electromagnetic waves, vircator, virtod, virtod-BWT

Abstract

The paper presents an overview of the authors’ scientific works, which are further developments in the scientific directions of SHF and EHF electronics, which were first developed by scientists, particularly Professor V. P. Taranenko. The possibility of propagation of weakly decaying electromagnetic waves in super dimensional electrodynamic solid-state structures, including those containing plasma-like medium, is demonstrated. Attention is paid to excitation mechanisms of eigenwaves and eigenoscillations of such structures, which are based on the Vavilov–Cherenkov effect, anomalous Doppler effect, or transient radiation. The generation of electromagnetic radiation in the interaction between the charged particle flows, and the fields of eigenwaves or eigenoscillations of such structures have been demonstrated. The possibility of mastering the millimeter and submillimeter wavelength ranges using multimode electrodynamic structures with dimensions acceptable for production is shown. Electrodynamic systems based on supercritical currents of the relativistic electron beam, such as virtod and virtod-BWT, are presented, in which the control of the amplitude-frequency characteristics of microwave radiation is implemented.

References

O. Y. Kyrychenko, Y. V. Prokopenko, Y. F. Filipov, M. T. Cherpak, Quasi-optical Solid-state Resonators, [in Ukrainian]. Kyiv: Naukova Dumka, 2008.

A. Barannik, N. Cherpak, A. Kirichenko, Y. Prokopenko, S. Vitusevich, V. Yakovenko, “Whispering gallery mode resonators in microwave physics and technologies,” Int. J. Microw. Wirel. Technol., vol. 9, no. 4, pp. 781–796, 2017, doi: https://doi.org/10.1017/S1759078716000787.

K. V. Galaydych, Y. F. Lonin, A. G. Ponomarev, Y. V. Prokopenko, G. V. Sotnikov, “Mathematical model of an excitation by electron beam of ‘whispering gallery’ modes in cylindrical dielectric resonator,” Probl. At. Sci. Technol. Ser. Plasma Phys., vol. 16, no. 6, pp. 123–125, 2010.

A. Y. Kirichenko et al., “Microwave oscillator with ‘whispering gallery’ resonator,” Probl. At. Sci. Technol. Ser. Nucl. Phys. Res., no. 2, pp. 135–139, 2010, uri: http://dspace.nbuv.gov.ua/handle/123456789/15706.

A. V. Dormidontov et al., “Auto-oscillatory system based on dielectric resonator with whispering-gallery modes,” Tech. Phys. Lett., vol. 38, no. 1, pp. 85–88, 2012, doi: https://doi.org/10.1134/S106378501201021X.

K. V. Galaydych, Y. F. Lonin, A. G. Ponоmarev, Y. V. Prokopenko, G. V. Sotnikov, V. T. Uvarov, “Excitation of mm waves by high-current REB in dielectric resonator,” Probl. At. Sci. Technol. Ser. Nucl. Phys. Res., no. 3, pp. 174–178, 2012.

K. V. Galaydych, Y. F. Lonin, A. G. Ponomarev, Y. V. Prokopenko, G. V. Sotnikov, “Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator,” Probl. At. Sci. Technol. Ser. Plasma Phys., no. 6, pp. 158–160, 2012, uri: http://dspace.nbuv.gov.ua/handle/123456789/109220.

R. K. Parker, R. H. Abrams, B. G. Danly, B. Levush, “Vacuum electronics,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 835–845, 2002, doi: https://doi.org/10.1109/22.989967.

N. S. Ginzburg, V. Y. Zaslavskii, A. M. Malkin, A. S. Sergeev, “Relativistic surface-wave oscillators with 1D and 2D periodic structures,” Tech. Phys., vol. 57, no. 12, pp. 1692–1705, 2012, doi: https://doi.org/10.1134/S1063784212120110.

N. S. Ginzburg, V. Y. Zaslavskii, A. M. Malkin, A. S. Sergeev, “Quasi-optical theory of coaxial and cylindrical relativistic surface-wave oscillators,” Tech. Phys., vol. 58, no. 2, pp. 267–276, 2013, doi: https://doi.org/10.1134/S1063784213020102.

B. A. Kotserzhinskii, E. A. Machusskii, N. A. Pershin, V. P. Taranenko, “Solid-state oscillators with quasioptical resonant systems,” Radioelectron. Commun. Syst., vol. 30, no. 10, pp. 11–20, 1987.

V. P. Silin, A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-like Media. Moscow: Gosatomizdat, 1961.

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1984, uri: https://www.sciencedirect.com/book/9780080302751/electrodynamics-of-continuous-media.

A. V. Dormidontov, Y. V. Prokopenko, S. I. Khankina, V. M. Yakovenko, “Energy loss of a charged particle moving along the helical path,” Telecommun. Radio Eng., vol. 73, no. 13, pp. 1165–1189, 2014, doi: https://doi.org/10.1615/TelecomRadEng.v73.i13.40.

A. V. Dormidontov, Y. V. Prokopenko, S. I. Khankina, V. M. Yakovenko, “Energy loss of charged particles on the eigenmode excitation in cylindrical structures with two-dimensional electron gas,” Telecommun. Radio Eng., vol. 75, no. 6, pp. 507–525, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i6.30.

A. V. Dormidontov, Y. V. Prokopenko, V. M. Yakovenko, “Charged particle energy loss on the wave excitation in the semiconductor cylinder with twodimensional electron gas on the side surface,” Telecommun. Radio Eng., vol. 75, no. 3, pp. 201–213, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i3.20.

A. V. Dormidontov, Y. V. Prokopenko, S. I. Khankina, V. M. Yakovenko, “Fast charge energy losses in structures with a 2D electron gas,” Tech. Phys., vol. 60, no. 7, pp. 1069–1076, 2015, doi: https://doi.org/10.1134/S1063784215070105.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Charged-particle energy loss by the excitation of surface magnetoplasmons in a structure with two- and three-dimensional plasmas,” J. Exp. Theor. Phys., vol. 121, no. 4, pp. 699–705, 2015, doi: https://doi.org/10.1134/S1063776115100039.

Y. Averkov, Y. Prokopenko, V. Yakovenko, “Energy loss of a charged particle during its interaction with a dielectric cylinder,” Radiofiz. i Elektron., vol. 25, no. 1, pp. 60–69, 2020, doi: https://doi.org/10.15407/rej2020.01.060.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “The instability of hollow electron beam interacting with plasma-like medium,” Telecommun. Radio Eng., vol. 75, no. 16, pp. 1467–1482, 2016, doi: https://doi.org/10.1615/TelecomRadEng.v75.i16.50.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Instability of a tubular electron beam moving over a dielectric cylinder,” Tech. Phys., vol. 62, no. 10, pp. 1578–1584, 2017, doi: https://doi.org/10.1134/S1063784217100061.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Interaction of a flow of charged particles with eigenmodes of a dielectric cylinder,” Telecommun. Radio Eng., vol. 76, no. 18, pp. 1595–1611, 2017, doi: https://doi.org/10.1615/TelecomRadEng.v76.i18.20.

A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, K. N. Stepanov, Plasma electrodynamics, [in Russian]. Moscow: Nauka, 1974, uri: https://www.kipt.kharkov.ua/itp/akhiezer/en/papers/index.html.

G. Bekefi, Radiation Processes in Plasmas. New York: Wiley, 1966.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Іnteraction between a tubular beam of charged particles and an anisotropic dispersive solid-state cylinder,” Probl. At. Sci. Technol. Ser. Plasma Electron. New Methods Accel., no. 4, pp. 3–12, 2018, uri: http://dspace.nbuv.gov.ua/handle/123456789/147320.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Eigenwave spectra of an anisotropic cylindrical solid-state waveguide,” Tech. Phys., vol. 64, no. 1, pp. 1–7, 2019, doi: https://doi.org/10.1134/S1063784219010055.

M. E. Ilchenko et al., Dielectric resonators, [in Russian]. Moscow: Radio i Svyaz’, 1989.

L. A. Vainshtein, Electromagnetic Waves, [in Russian]. Moscow: Radio i Svyaz’, 1988.

Y. Averkov, Y. Prokopenko, V. Yakovenko, “Eigenwave spectra of a solid-state plasma cylinder in a strong longitudinal magnetic field,” Radiofiz. i Elektron., vol. 26, no. 2, pp. 37–45, 2021, doi: https://doi.org/10.15407/rej2021.02.037.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Waves of a magnetoplasma solid-state cylinder under quasi-stationary conditions,” IEEE Trans. Plasma Sci., vol. 49, no. 10, pp. 3078–3085, 2021, doi: https://doi.org/10.1109/TPS.2021.3113117.

S. I. Khankina, V. M. Yakovenko, I. V. Yakovenko, “Surface plasma waves at a rough interface of a solid,” Radiophys. Quantum Electron., vol. 45, no. 10, pp. 813–819, 2002, doi: https://doi.org/10.1023/a:1022488518808.

S. I. Khankina, V. M. Yakovenko, I. V. Yakovenko, “Surface electron states produced by a Rayleigh wave,” J. Exp. Theor. Phys., vol. 104, no. 3, pp. 467–473, 2007, doi: https://doi.org/10.1134/S1063776107030132.

V. L. Ginzburg, V. N. Sazonov, S. I. Syrovatskiĭ, “Synchrotron radiation and its reabsorption,” Sov. Phys. Uspekhi, vol. 11, no. 1, pp. 34–48, 1968, doi: https://doi.org/10.1070/PU1968v011n01ABEH003723.

M. V. Kuzelev, A. A. Rukhadze, “Stimulated radiation from high-current relativistic electron beams,” Sov. Phys. Uspekhi, vol. 30, no. 6, pp. 507–524, 1987, doi: https://doi.org/10.1070/PU1987v030n06ABEH002853.

Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, “Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor,” Probl. At. Sci. Technol. Ser. Plasma Electron. New Methods Accel., no. 4, pp. 15–20, 2013, uri: http://dspace.nbuv.gov.ua/handle/123456789/111905.

Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, F. Nori, “Terahertz transition radiation of bulk and surface electromagnetic waves by an electron entering a layered superconductor,” Phys. Rev. B, vol. 89, no. 994506, 2014, doi: https://doi.org/10.1103/PhysRevB.89.094506.

Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, F. Nori, “Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves,” Phys. Rev. Lett., vol. 109, no. 227005, 2012, doi: https://doi.org/10.1103/PhysRevLett.109.027005.

Y. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, F. Nori, “Oblique surface Josephson plasma waves in layered superconductors,” Phys. Rev. B, vol. 87, no. 554505, 2013, doi: https://doi.org/10.1103/PhysRevB.87.054505.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration,” Phys. Rev. E, vol. 96, no. 113205, 2017, doi: https://doi.org/10.1103/PhysRevE.96.013205.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Instability of a tubular electron beam blowing around a plasma solid-state cylinder located in a strong longitudinal magnetic field,” Ukr. J. Phys., vol. 67, no. 4, p. 255, 2022, doi: https://doi.org/10.15407/ujpe67.4.255.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Interaction of a tubular charged-particle beam with eigenwaves of a plasma solid-state cylinder located in strong longitudinal magnetic field,” J. Phys. A Math. Theor., vol. 56, no. 115202, 2023, doi: https://doi.org/10.1088/1751-8121/acb024.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Helicons in plasma solid-state waveguide of cylindrical configuration,” Probl. At. Sci. Technol., pp. 19–23, 2019, doi: https://doi.org/10.46813/2019-122-019.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, V. A. Yampol’skii, “Quantum dispersion properties of eigenmodes in semiconductor nanotubes with dielectric filling in dc magnetic field,” Low Temp. Phys., vol. 49, no. 1, pp. 3–14, 2023, doi: https://doi.org/10.1063/10.0016471.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, V. A. Yampol’skii, “Manifestation of the Aharonov-Bohm effect in the interaction of moving charges with a semiconductor nanotube with dielectric filling,” Phys. Rev. B, vol. 108, no. 775420, 2023, doi: https://doi.org/10.1103/PhysRevB.108.075420.

Y. O. Averkov, Y. V. Prokopenko, V. A. Yampol’skii, “Manifestation of the Aharonov–Bohm effect in hydrodynamic instability of an electron beam moving along a semiconductor nanotube,” Low Temp. Phys., vol. 50, no. 5, pp. 396–408, 2024, doi: https://doi.org/10.1063/10.0025623.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Nonlinear theory of interaction between a tubular beam of charged particles and potential surface waves of plasma cylinder,” Telecommun. Radio Eng., vol. 78, no. 7, pp. 633–649, 2019, doi: https://doi.org/10.1615/TelecomRadEng.v78.i7.70.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Nonlinear stabilization of resistive instability of a tubular charged particle beam moving above a solid-state plasma cylinder,” Plasma Phys. Reports, vol. 45, no. 6, pp. 565–572, 2019, doi: https://doi.org/10.1134/S1063780X19060011.

Y. O. Averkov, Y. V. Prokopenko, V. M. Yakovenko, “Numerical analysis of the interaction between a tubular beam of charged particles and a dielectric cylinder,” J. Exp. Theor. Phys., vol. 130, no. 5, pp. 737–747, 2020, doi: https://doi.org/10.1134/S1063776120030012.

L. A. Weinstein, V. A. Solntsev, Lectures on microwave electronics, [in Russian]. Moscow: Sov. Radio, 1973.

M. V. Kuzelev, A. A. Rukhadze, P. S. Strelkov, Plasma relativistic microwave electronics, [in Russian]. Moscow: N. E. Bauman Moscow State Technical University, 2002.

M. V. Nezlin, “Negative-energy waves and the anomalous Doppler effect,” Sov. Phys. Uspekhi, vol. 19, no. 11, pp. 946–954, 1976, doi: https://doi.org/10.1070/PU1976v019n11ABEH005357.

J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773–4776, 1996, doi: https://doi.org/10.1103/PhysRevLett.76.4773.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, 2000, doi: https://doi.org/10.1103/PhysRevLett.84.4184.

M. L. Dmitruk, V. H. Lytovchenko, V. L. Stryzhevskyi, Surface polaritons in semiconductors and dielectrics, [in Ukrainian]. Kyiv: Naukova Dumka, 1989.

N. G. Matsiborko, I. N. Onishchenko, V. D. Shapiro, V. I. Shevchenko, “On non-linear theory of instability of a mono-energetic electron beam in plasma,” Plasma Phys., vol. 14, no. 6, pp. 591–600, 1972, doi: https://doi.org/10.1088/0032-1028/14/6/003.

B. M. Marder, M. C. Clark, L. D. Bacon, J. M. Hoffman, R. W. Lemke, P. D. Coleman, “The split-cavity oscillator: a high-power E-beam modulator and microwave source,” IEEE Trans. Plasma Sci., vol. 20, no. 3, pp. 312–331, 1992, doi: https://doi.org/10.1109/27.142833.

Y. O. Averkov, V. M. Yakovenko, “Role of the Ridley-Watkins-Hilsum mechanism in the stabilization of surface plasma waves,” Plasma Phys. Reports, vol. 27, no. 7, pp. 608–613, 2001, doi: https://doi.org/10.1134/1.1385440.

Y. O. Averkov, V. M. Yakovenko, “Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material,” Phys. Rev. B, vol. 72, no. 20, p. 205110, 2005, doi: https://doi.org/10.1103/PhysRevB.72.205110.

Y. O. Averkov, F. G. Bass, V. M. Yakovenko, “Excitation of excitons in semi-infinite solids with a nonrelativistic electron beam,” Phys. Solid State, vol. 51, no. 1, pp. 61–68, 2009, doi: https://doi.org/10.1134/S1063783409010077.

Y. O. Averkov, A. V. Kats, V. M. Yakovenko, “Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces,” Phys. Rev. B, vol. 79, no. 19, p. 193402, 2009, doi: https://doi.org/10.1103/PhysRevB.79.193402.

Y. O. Averkov, A. V. Kats, V. M. Yakovenko, “Interaction of surface electromagnetic waves with an electron beam moving along the interface between metamaterials,” Tech. Phys., vol. 54, no. 9, pp. 1245–1254, 2009, doi: https://doi.org/10.1134/S1063784209090011.

Y. O. Averkov, V. M. Yakovenko, “Generation of transition radiation in the form of electromagnetic surface waves by electron bunches,” Plasma Phys. Reports, vol. 30, no. 6, pp. 519–526, 2004, doi: https://doi.org/10.1134/1.1768584.

Y. O. Averkov, “Transition radiation by an electron bunch that crosses the vacuum/left-handed material interface,” Telecommun. Radio Eng., vol. 63, no. 5, pp. 419–433, 2005, doi: https://doi.org/10.1615/TelecomRadEng.v63.i5.50.

Y. O. Averkov, V. M. Yakovenko, “Transition radiation of nonstationary waves by an electron bunch that crosses a two-dimensional electron gas,” Probl. At. Sci. Technol. Ser. Plasma Electron. New Methods Accel., no. 5, pp. 10–14, 2006, uri: http://dspace.nbuv.gov.ua/handle/123456789/80434.

N. P. Gadetsky, I. I. Magda, S. I. Naisteter, Y. V. Prokopenko, V. I. Chumakov, “Oscillator on supercritical current of REB with controlled feedback - virtod,” Plasma Phys., vol. 19, no. 4, pp. 530–537, 1993.

A. A. Rukhadze, S. D. Stolbetsov, V. P. Tarakanov, “Vircators (a review),” Sov. J. Commun. Technol. Electron., vol. 37, no. 9, pp. 1–11, 1992.

P. T. Chupikov, R. J. Faehl, I. N. Onishchenko, Y. V. Prokopenko, S. S. Pushkarev, “Vircator efficiency enhancement assisted by plasma,” IEEE Trans. Plasma Sci., vol. 34, no. 1, pp. 14–17, 2006, doi: https://doi.org/10.1109/TPS.2005.863590.

D. V. Medvedev, N. I. Onishchenko, B. D. Panasenko, Y. V. Prokopenko, S. S. Pushkarev, P. T. Chupikov, “Ion acceleration in plasma injected into spatiotemporally modulated supercritical relativistic electron beam,” Tech. Phys. Lett., vol. 34, no. 9, pp. 789–791, 2008, doi: https://doi.org/10.1134/S1063785008090228.

P. T. Chupikov, I. N. Onishchenko, Y. V. Prokopenko, S. S. Pushkarev, A. M. Yegorov, “Microwave generation by supercritical REB at plasma assistance,” Probl. At. Sci. Technol. Ser. Nucl. Phys. Investig., vol. 43, no. 2, pp. 158–160, 2004, uri: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2004_2/article_2004_2_158.pdf.

Y. P. Bliokh, I. I. Magda, S. I. Naisteter, Y. V. Prokopenko, “Study of frequency spectrum of one-dimensional microwave system on virtual cathode,” Plasma Phys., vol. 18, no. 9, pp. 1191–1197, 1992.

Experimental setup of self-oscillatory system based on CDR with “whispering gallery” modes

Published

2024-03-25

Issue

Section

Review Articles