Parameters of ribbon electron beam formed by HVGD guns: study of plasma boundary position
DOI:
https://doi.org/10.3103/S0735272724020031Keywords:
electron beam technologies, electron gun, ribbon electron beam, high-voltage glow discharge, anode plasmaAbstract
In the first part of the paper, analytical relations are obtained to calculate the plasma boundary position relative to the cathode surface in the high-voltage glow discharge electrode system forming a ribbon electron beam with a linear focus. The calculations assume that in systems with different electrode geometries, the anode plasma occupies the same volume under the same accelerating voltage and pressure. The simulated graphical dependencies of the plasma boundary position on the accelerating voltage and gas pressure are presented. The theoretical and experimental studies show that the calculated data for the plasma boundary position relative to the cathode differ from the experimental data by no more than 10% in the case of medium and high-pressure values in the gas discharge gun chamber.
Computer simulation methods can determine the electric field distribution and focal parameters of a linearly focused ribbon electron beam, as in high-voltage glow discharge electrode systems, where the anode plasma is a source of ions and an electrode with potential.
References
S. V. Denbnovetsky, I. V. Melnyk, V. G. Melnyk, B. A. Tugai, S. B. Tuhai, “High voltage glow discharge electron guns and its advanced application examples in electronic industry,” in 2016 International Conference Radio Electronics & Info Communications (UkrMiCo), 2016, pp. 1–4, doi: https://doi.org/10.1109/UkrMiCo.2016.7739615.
S. V. Denbnovetsky, V. I. Melnyk, I. V. Melnyk, “High voltage glow discharge electron sources and possibilities of its technological application,” in 20th International Symposium on Discharges and Electrical Insulation in Vacuum, 2002, pp. 111–114, doi: https://doi.org/10.1109/ISDEIV.2002.1027321.
I. V. Melnyk, “Simulation of geometry of high voltage glow discharge electrodes’ systems, formed profile electron beams,” in Proc. SPIE 6278, Seventh Seminar on Problems of Theoretical and Applied Electron and Ion Optics, 2006, pp. 627809-627809–13, doi: https://doi.org/10.1117/12.693202.
I. V. Melnyk, A. V. Pochynok, “Modeling of electron sources for high voltage glow discharge forming profiled electron beams,” Radioelectron. Commun. Syst., vol. 62, no. 6, pp. 251–261, 2019, doi: https://doi.org/10.3103/S0735272719060013.
I. V. Melnyk, A. V. Pochynok, “Algorithm of calculation of focal parameters of profile electron beams, formed by the gas-discharge electron guns,” Syst. Res. Inf. Technol., no. 2, pp. 7–17, 2019, doi: https://doi.org/10.20535/SRIT.2308-8893.2019.2.01.
J. Chang, S. Li, Z. Lin, F. Bai, G. Li, Z. Bai, “Characterization of magnetic focusing of electron gun based on structural parameters of magnetic lens,” Chinese J. Vac. Sci. Technol., vol. 44, no. 5, pp. 463–469, 2024, doi: https://doi.org/10.13922/j.cnki.cjvst.202401009.
L. Gu, J. Yang, H. Zhao, W. Tan, J. Li, “Simulation analysis of factors affecting penning discharge in high current pulsed electron beam,” Chinese J. Vac. Sci. Technol., vol. 44, no. 2, pp. 184–190, 2024, doi: https://doi.org/10.13922/j.cnki.cjvst.202306003.
Y. Qiu, S. Li, X. Zheng, S. Fu, F. Bai, “Electrostatic focusing characteristic of electron gun with multi-parameter coupling,” Chinese J. Vac. Sci. Technol., vol. 41, no. 11, pp. 1094–1100, 2021, doi: https://doi.org/10.13922/j.cnki.cjvst.202101027.
S. Schiller, U. Heisig, S. Panzer, Electron Beam Technology. New-York: John Wiley & Sons, 1982.
M. Szilagyi, Electron and Ion Optics. Heidelberg: Springer, 2011.
A. A. Druzhinin, I. P. Ostrovskii, Y. N. Khoverko, N. S. Liakh-Kaguy, A. M. Vuytsyk, “Low temperature characteristics of germanium whiskers,” Funct. Mater., vol. 21, no. 2, pp. 130–136, 2014, doi: https://doi.org/10.15407/fm21.02.130.
A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, “Low temperature magnetoresistance of InSb whiskers,” Mater. Sci. Semicond. Process., vol. 40, pp. 550–555, 2015, doi: https://doi.org/10.1016/j.mssp.2015.07.030.
I. Melnyk, S. Tuhai, M. Surzhykov, I. Shved, V. Melnyk, D. Kovalchuk, “Analytical estimation of the deep of seam penetration for the electron-beam welding technologies with application of glow discharge electron guns,” in 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, pp. 1–5, doi: https://doi.org/10.1109/ELNANO54667.2022.9927071.
T. O. Prikhna et al., “Electron-beam and plasma oxidation-resistant and thermal-barrier coatings deposited on turbine blades using cast and powder Ni(Co)CrALY(Si) alloys I. Fundamentals of the production technology, structure, and phase composition of cast NiCrAlY alloys,” Powder Metall. Met. Ceram., vol. 61, no. 1–2, pp. 70–76, 2022, doi: https://doi.org/10.1007/s11106-022-00296-8.
T. O. Prikhna et al., “Electron-beam and plasma oxidation-resistant and thermal-barrier coatings deposited on turbine blades using cast and powder Ni(Co)CrAlY(Si) alloys produced by electron-beam melting II. Structure and chemical and phase composition of cast CoCrAlY alloys,” Powder Metall. Met. Ceram., vol. 61, no. 3–4, pp. 230–237, 2022, doi: https://doi.org/10.1007/s11106-022-00310-z.
S. V. Denbnovetsky, V. I. Melnyk, I. V. Melnyk, P. V. Porytskyy, “Experimental and theoretical investigation of technological process of obtaining of metals oxide and nitride coatings by using high-voltage gas-discharge electron beam evaporator,” in Proceedings ISDEIV. 19th International Symposium on Discharges and Electrical Insulation in Vacuum (Cat. No.00CH37041), 2000, vol. 2, pp. 552–555, doi: https://doi.org/10.1109/DEIV.2000.879048.
I. V. Melnyk, V. I. Melnyk, P. V. Porytskyy, “Investigation of metal evaporation and film deposition with a high voltage glow-discharge electron gun under middle vacuum,” in XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV., 2004, vol. 2, pp. 575–578, doi: https://doi.org/10.1109/DEIV.2004.1422681.
A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, “Trisection bandpass filter with mixed cross-coupling and different paths for signal propagation,” IEEE Microw. Wirel. Components Lett., vol. 30, no. 1, pp. 12–15, 2020, doi: https://doi.org/10.1109/LMWC.2019.2957207.
A. N. Kalinyuk, A. Y. Derecha, V. V. Telin, A. F. Kolyada, V. I. Kostenko, N. M. Ivanov, “Peculiarities of Production of Slab-type Cast Billets of Vt1-0 and Grade 2 Types of Low-grade Spongy Titanium,” Electrometall. Today, vol. 2018, no. 3, pp. 20–26, 2018, doi: https://doi.org/10.15407/sem2018.03.03.
T. Kemmotsu, T. Nagai, M. Maeda, “Removal rate of phosphorus from molten silicon,” High Temp. Mater. Process., vol. 30, no. 1–2, pp. 17–22, 2011, doi: https://doi.org/10.1515/htmp.2011.002.
S. V. Denbnovetsky, V. G. Melnyk, I. V. Melnyk, B. A. Tugay, “Obtaining of powerful electron beams in high voltage glow discharges with cold cathodes,” in XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV., vol. 2, pp. 533–536, doi: https://doi.org/10.1109/DEIV.2004.1422668.
W. E. Frazier, “Metal additive manufacturing: a review,” J. Mater. Eng. Perform., vol. 23, no. 6, pp. 1917–1928, 2014, doi: https://doi.org/10.1007/s11665-014-0958-z.
F. Froes, R. Boyer, Additive Manufacturing for the Aerospace Industry. Elsevier, 2019, doi: https://doi.org/10.1016/C2017-0-00712-7.
D. Kovalchuk, V. Melnyk, I. Melnyk, “A coaxial wire-feed additive manufacturing of metal components using a profile electron beam in space application,” J. Mater. Eng. Perform., vol. 31, no. 8, pp. 6069–6082, 2022, doi: https://doi.org/10.1007/s11665-022-06994-z.
B. M. Smirnov, Theory of Gas Discharge Plasma, vol. 84. Cham: Springer International Publishing, 2015, doi: https://doi.org/10.1007/978-3-319-11065-3.
Y. P. Raizer, Gas Discharge Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, doi: https://doi.org/10.1007/978-3-642-61247-3.
J. A. Bittencourt, Fundamentals of Plasma Physics. New York, NY: Springer New York, 2004, doi: https://doi.org/10.1007/978-1-4757-4030-1.
N. A. Krall, A. W. Trivelpiece, Principles of Plasma Physics. San Francisco Press, 1986, uri: https://www.abebooks.com/Principles-Plasma-Physics-Krall-Nicholas-Trivelpiece/31959939425/bd.
R. Fitzpatrick, Plasma Physics. Taylor & Francis, 2023, uri: https://www.routledge.com/Plasma-Physics-An-Introduction/Fitzpatrick/p/book/9781032202518.
G. J. Pert, Modelling and Simulation in Plasma Physics for Physicists and Mathematicians. Wiley, 2024.
U. S. Inan, M. Gołkowski, Principles of Plasma Physics for Engineers and Scientists. Cambridge: Cambridge University Press, 2010, doi: https://doi.org/10.1017/CBO9780511761621.
P. M. Bellan, Fundamentals of Plasma Physics. Cambridge: Cambridge University Press, 2006, doi: https://doi.org/10.1017/CBO9780511807183.
P. H. Diamond, S.-I. Itoh, K. Itoh, Modern Plasma Physics. Cambridge: Cambridge University Press, 2014.
I. V. Melnyk, V. G. Melnyk, B. A. Tugai, S. B. Tuhai, N. I. Mieshkova, A. V. Pochynok, “Simplyfied universal analytical model for defining of plasma boundary position in the glow discharge electron guns for forming conic hollow electron beam,” in 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), 2019, pp. 548–552, doi: https://doi.org/10.1109/ELNANO.2019.8783454.
I. Melnyk, S. Tugay, V. Kyryk, I. Shved, “Methods and algorithm for calculating the focal parameters of a hollow conical electron beam in high-voltage glow discharge electron guns with a focusing magnetic lens,” Syst. Res. Inf. Technol., no. 3, pp. 17–32, 2021, doi: https://doi.org/10.20535/SRIT.2308-8893.2021.3.02.
