Study of near-threshold power discharge in miniature low-pressure microwave induction plasmatron

Authors

DOI:

https://doi.org/10.3103/S0735272724010059

Keywords:

plasmatron, microwave discharge, inductor, dielectric cuvette, plasma, pumping power, electron density, plasma potential, alternating magnetic field

Abstract

The results of research using 2D simulation in the drift-diffusion approximation of a plasma discharge in a cylindrical dielectric cuvette of 14 mm diameter for a low-pressure induction plasmatron with pumping at a frequency of 2.45 GHz with near-threshold power of 10–25 mW are presented. Spatial distributions of discharge plasma parameters and absorption of electromagnetic energy are calculated. The magnetic field penetrates the plasma to the axis of the cuvette and has a solenoidal behavior with no strong skin effect. The results can be used to develop plasma generators for miniature radio-electronic and gas analytical devices.

References

Y. A. Lebedev, “Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma,” Plasma Sources Sci. Technol., vol. 24, no. 553001, 2015, doi: https://doi.org/10.1088/0963-0252/24/5/053001.

Y. Yin, J. Messier, J. A. Hopwood, “Miniaturization of inductively coupled plasma sources,” IEEE Trans. Plasma Sci., vol. 27, no. 5, pp. 1516–1524, 1999, doi: https://doi.org/10.1109/27.799834.

S. K. Nam, D. J. Economou, “Two-dimensional simulation of a miniaturized inductively coupled plasma reactor,” J. Appl. Phys., vol. 95, no. 5, pp. 2272–2277, 2004, doi: https://doi.org/10.1063/1.1644043.

Y. Takao, N. Kusaba, K. Eriguchi, K. Ono, “Two-dimensional particle-in-cell Monte Carlo simulation of a miniature inductively coupled plasma source,” J. Appl. Phys., vol. 108, no. 9, 2010, doi: https://doi.org/10.1063/1.3506536.

A. D. MacDonald, Microwave Breakdown in Gases. New York: Wiley, 1966.

Y. P. Raizer, Gas Discharge Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, doi: https://doi.org/10.1007/978-3-642-61247-3.

S. T. Surzhikov, Theoretical and Computational Physics of Gas Discharge Phenomena. De Gruyter, 2020, doi: https://doi.org/10.1515/9783110648836.

Comsol, “Plasma Module Users Guide,” in Comsol Multiphysics, 2021.

Comsol, “Thermal plasma,” in Comsol Multiphysics, 2021.

E. W. MacDaniel, Collision Phenomena in Ionized Gases. New York, London, Sydney: Jonh Wiley & Sons, 1964.

Radial distributions of plasma electrons density and average electrostatic potential for several values of pumping power

Published

2024-03-25

Issue

Section

Brief Communications