Diffused oscillation spectra in dielectric materials
DOI:
https://doi.org/10.3103/S0735272723110031Keywords:
permittivity, dielectric spectroscopy, dielectric spectrum, dielectric materials, relaxator, oscillator, diffused spectrumAbstract
Dielectric spectroscopy is widely used in research on electronic materials. When processing experimental data, relaxation models are often used to obtain the parameters of the researched material. However, we should prefer the oscillator methods to study composite materials with resonance components, crystals, and polycrystals, whose structure is multi-domain or characterized by high disharmony. In this paper, we consider a dielectric dispersive oscillator model in detail. Primary attention is paid to the case of an oscillator with very high attenuation. It is determined that the main feature of resonance dispersion is the presence of a minimum in the frequency dependence of a real part of the permittivity.
References
T. Teranishi, “Broadband spectroscopy of dielectrics and oxygen-ion conductors,” J. Ceram. Soc. Japan, vol. 125, no. 7, pp. 547–551, 2017, doi: https://doi.org/10.2109/jcersj2.17083.
Y. Poplavko, Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics. Woodhead Publishing, 2021, uri: https://www.elsevier.com/books/dielectric-spectroscopy-of-electronic-materials/poplavko/978-0-12-823518-8.
Y. Poplavko, Electronic Materials: Principles and Applied Science. Amsterdam: Elsevier, 2018, uri: https://www.elsevier.com/books/electronic-materials/poplavko/978-0-12-815255-3.
X. Li, M. Ahmadi, L. Collins, S. V. Kalinin, “Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning,” Electrochim. Acta, vol. 313, pp. 570–583, 2019, doi: https://doi.org/10.1016/j.electacta.2019.05.010.
L. E. Helseth, “Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times,” J. Energy Storage, vol. 25, p. 100912, 2019, doi: https://doi.org/10.1016/j.est.2019.100912.
D. Chaikovskyi, D. Chypehin, D. Tatarchuk, Y. Didenko, Y. Poplavko, “Microwave absorbing composites designing,” in 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 2022, pp. 30–34, doi: https://doi.org/10.1109/ELNANO54667.2022.9927096.
F. Kremer, A. Schönhals, Eds., Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, doi: https://doi.org/10.1007/978-3-642-56120-7.
Y. M. Poplavko, D. D. Tatarchuk, Y. V. Didenko, D. V. Chypegin, “Blurred relaxation spectra in dielectric materials,” Radioelectron. Commun. Syst., vol. 65, no. 5, pp. 221–234, 2022, doi: https://doi.org/10.3103/S0735272722050016.
Y. Poplavko, D. Tatarchuk, Y. Didenko, D. Chypegin, “Microwave absorbing composite materials,” Radioelectron. Commun. Syst., vol. 66, no. 1, pp. 23–32, 2023, doi: https://doi.org/10.3103/S0735272723010065.
K. S. Cole, R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” J. Chem. Phys., vol. 9, no. 4, pp. 341–351, 1941, doi: https://doi.org/10.1063/1.1750906.
Y. P. Kalmykov, Ed., Recent Advances in Broadband Dielectric Spectroscopy. Dordrecht: Springer Netherlands, 2013, doi: https://doi.org/10.1007/978-94-007-5012-8.
V. F. Lvovich, Impedance Spectroscopy. New Jersey: Wiley, 2012, doi: https://doi.org/10.1002/9781118164075.