Analytical-numerical study of electromagnetic scattering on small-size particles
DOI:
https://doi.org/10.3103/S0735272723100011Keywords:
electromagnetic scattering, discrete dipole method, asymptotic method, extinction spectrum, directional pattern, simulation resultsAbstract
The paper deals with solving the problem of electromagnetic (EM) scattering on a set of small particles using the discrete dipole method and the asymptotic approach. The commonality of approaches makes it possible to study the scattering characteristics in the subterahertz range of waves on metal and dielectric nanoparticles. In both cases, an auxiliary system of linear algebraic equations (SLAE) is solved to determine the electric field vectors, which, in the case of the asymptotic approach, has a slightly smaller dimension. The limits of applying the asymptotic approach, which depends on the norm of the auxiliary SLAE matrix, have been established. Numerical calculations demonstrate the possibility of obtaining broad extinction spectra and narrow radiation patterns (RPs).
References
K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B, vol. 107, no. 3, pp. 668–677, 2003, doi: https://doi.org/10.1021/jp026731y.
M. Hu et al., “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev., vol. 35, no. 11, p. 1084, 2006, doi: https://doi.org/10.1039/b517615h.
A. I. Fernández-Domínguez, S. A. Maier, “New design principles for nanoplasmonics,” IEEE Photonics J., vol. 3, no. 2, pp. 284–287, 2011, doi: https://doi.org/10.1109/JPHOT.2011.2127469.
A. Mock, “Modal analysis of nanoplasmonic multilayer spherical resonators,” IEEE Photonics J., vol. 3, no. 4, pp. 765–776, 2011, doi: https://doi.org/10.1109/JPHOT.2011.2163388.
J. M. Fitzgerald, P. Narang, R. V. Craster, S. A. Maier, V. Giannini, “Quantum plasmonics,” Proc. IEEE, vol. 104, no. 12, pp. 2307–2322, 2016, doi: https://doi.org/10.1109/JPROC.2016.2584860.
V. Klimov, Nanoplasmonics. Boca Raton, FL: CRC Press, 2013, uri: https://www.routledge.com/Nanoplasmonics/Klimov/p/book/9789814267168.
D. Sarid, W. Challener, Modern Introduction to Surface Plasmons. Cambridge University Press, 2010, doi: https://doi.org/10.1017/CBO9781139194846.
S. A. Maier, Plasmonics: Fundamentals and Applications. New York, NY: Springer US, 2007, doi: https://doi.org/10.1007/0-387-37825-1.
R. Mittra, S. L. Ray, A. F. Peterson, Computational Methods for Electromagnetics. Wiley-IEEE Press, 1997, uri: https://www.wiley.com/en-us/Computational+Methods+for+Electromagnetics-p-9780780311220.
Y. Brick, A. Boag, “Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 1, pp. 262–273, 2010, doi: https://doi.org/10.1109/TUFFC.2010.1404.
Y. Lei, M. S. Haynes, D. Arumugam, C. Elachi, “A 2-D pseudospectral time-domain (PSTD) simulator for large-scale electromagnetic scattering and radar sounding applications,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 6, pp. 4076–4098, 2020, doi: https://doi.org/10.1109/TGRS.2019.2960751.
P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods, vol. 2. Singapure: World Scientific, 1990, doi: https://doi.org/10.1142/0784.
R. Adelman, N. A. Gumerov, R. Duraiswami, “Computation of Galerkin double surface integrals in the 3-D boundary element method,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2389–2400, 2016, doi: https://doi.org/10.1109/TAP.2016.2546951.
M. Attia, M. Ney, T. Aguili, “A hybrid formulation of a frequency-domain TLM and integral equations field method,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 10, pp. 867–869, 2017, doi: https://doi.org/10.1109/LMWC.2017.2747131.
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering. Englewood Cliffs, NJ: Prentice Hall, 1991, uri: https://search.worldcat.org/title/Electromagnetic-wave-propagation-radiation-and-scattering/oclc/246564094.
D. R. Wilton, “Review of current status and trends in the use of integral equations in computational electromagnetics,” Electromagnetics, vol. 12, no. 3–4, pp. 287–341, 1992, doi: https://doi.org/10.1080/02726349208908318.
M. Hasanovic, C. Mei, J. R. Mautz, E. Arvas, “Scattering from 3-D inhomogeneous chiral bodies of arbitrary shape by the method of moments,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1817–1825, 2007, doi: https://doi.org/10.1109/TAP.2007.898590.
A. G. Ramm, “Electromagnetic wave scattering by many small particles and creating materials with a desired permeability,” Prog. Electromagn. Res. M, vol. 14, pp. 193–206, 2010, doi: https://doi.org/10.2528/PIERM10091603.
H. C. van de Hulst, Light Scattering by Small Particles. New York-London: John Wiley and Sons, Chapman and Hall, 1957.
J. I. Hage, J. M. Greenberg, R. T. Wang, “Scattering from arbitrarily shaped particles: theory and experiment,” Appl. Opt., vol. 30, no. 9, p. 1141, 1991, doi: https://doi.org/10.1364/AO.30.001141.
A. G. Ramm, M. I. Andriychuk, “Application of the asymptotic solution to EM field scattering problem for creation of media with prescribed permeability,” J. Appl. Math. Comput., vol. 45, no. 1–2, pp. 461–485, 2014, doi: https://doi.org/10.1007/s12190-013-0732-7.
E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J., vol. 186, p. 705, 1973, doi: https://doi.org/10.1086/152538.
P. C. Chaumet, “The discrete dipole approximation: A review,” Mathematics, vol. 10, no. 17, p. 3049, 2022, doi: https://doi.org/10.3390/math10173049.
A. G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shapes. Singapore: World Scientific, 2005, doi: https://doi.org/10.1142/5765.
A. V. Osipov, S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications. Wiley, 2017, doi: https://doi.org/10.1002/9781119004639.
A. G. Ramm, “Electromagnetic wave scattering by small bodies,” Phys. Lett. A, vol. 372, no. 23, pp. 4298–4306, 2008, doi: https://doi.org/10.1016/j.physleta.2008.03.010.
G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York, NY: McGraw-Hill, 1961.
I. Bolesta, A. Demchuk, O. Kushnir, I. Kolych, “Calculation methods at the plasmonic. 2. Discrete-dipole approximation method,” Electron. Inf. Technol., vol. 10, p. 1, 2018, doi: https://doi.org/10.30970/eli.10.1.
I. Bolesta, A. Demchuk, O. Kushnir, “Calculation methods at the plasmonic. 3. Finite difference time domain,” Electron. Inf. Technol., vol. 11, p. 579, 2019, doi: https://doi.org/10.30970/eli.11.1.
H. Zhang, “Mesh generation for voxel -based objects,” West Virginia University Libraries, 2005.
A. Demchuk, I. Bolesta, O. Kushnir, I. Kolych, “The computational studies of plasmon interaction,” Nanoscale Res. Lett., vol. 12, no. 1, p. 273, 2017, doi: https://doi.org/10.1186/s11671-017-2050-8.