Evolution of wireless communication networks from 5G to 6G future perspective

Authors

  • Mohammad Shabbir Alam Jazan University, Jazan, Saudi Arabia
  • Shams Tabrez Siddiqui Jazan University, Jazan, Saudi Arabia
  • Khalid Ali Qidwai Jazan University, Jazan, Saudi Arabia
  • Aasif Aftab Jazan University, Jazan, Saudi Arabia
  • Mohammad Shahid Kamal Jazan University, Jazan, Saudi Arabia
  • Fazal Imam Shahi Jazan University, Jazan, Saudi Arabia

DOI:

https://doi.org/10.3103/S0735272723050047

Keywords:

6G, IoT, Beyond-5G, Cloud-computing, Blockchain

Abstract

Industry 4.0 relies heavily on artificial-intelligence(AI) and cloud-computing(CC), both of which have been greatly aided by the 5th-generation mobile-network (5G). The arrival of 5G, however, is seen as a watershed moment that will radically alter the current global trends in wireless communication practices and the lives of the masses. 5G envisions a future where the digital and physical worlds merge. The 6th-generation (6G) wireless communication network will likely unite terrestrial, aerial, and maritime communications into a single, unified system that is both more stable and faster, and can accommodate a far larger number of devices with ultra-low latency needs. This research hopes to foresee a scenario in which 6G supersedes 5G as the dominant standard for wireless communication in the years to come. Several advances have been made, but the utopian period of instantaneous global communication, instantaneous global computation, and no latency has not yet arrived. This essay investigates the most significant obstacles and difficulties that the transition from 5G to 6G may encounter on the way to realizing these loftier goals. The vital goal of "technology for humanity" is to improve service to the world's most disadvantaged people, and this article lays out a plan for 6G that includes the enabling technology infrastructures, obstacles, and research directions that will get us there.

Author Biographies

Mohammad Shabbir Alam, Jazan University, Jazan

Department of Computer Science,
College of Computer Science and Information Technology

Shams Tabrez Siddiqui, Jazan University, Jazan

Department of Computer Science,
College of Computer Science and Information Technology

Khalid Ali Qidwai, Jazan University, Jazan

Department of Computer Science,
College of Computer Science and Information Technology

Aasif Aftab, Jazan University, Jazan

Department of Computer Science,
College of Computer Science and Information Technology

Mohammad Shahid Kamal, Jazan University, Jazan

Department of Computer Science,
College of Computer Science and Information Technology

Fazal Imam Shahi, Jazan University, Jazan

Deanship of E-Learning and Information Technology

References

Oughton, E.J. and Lehr, W., 2022. Surveying 5G techno-economic research to inform the evaluation of 6G wireless technologies. IEEE Access, 10, pp.25237-25257.

Banafaa, M., Shayea, I., Din, J., Azmi, M.H., Alashbi, A., Daradkeh, Y.I. and Alhammadi, A., 2022. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal.

Liu, L., Shafiq, M., Sonawane, V.R., Murthy, M.Y.B., Reddy, P.C.S. and kumar Reddy, K.C., 2022. Spectrum trading and sharing in unmanned aerial vehicles based on distributed blockchain consortium system. Computers and Electrical Engineering, 103, p.108255.

Dicandia, F.A., Fonseca, N.J., Bacco, M., Mugnaini, S. and Genovesi, S., 2022. Space-air-ground integrated 6G wireless communication networks: A review of antenna technologies and application scenarios. Sensors, 22(9), p.3136.

S. Upadhye, K. Lokesh, R. P. Kumar, D. J, R. Krishnamoorthy and S. Arun, "An Enhanced Security Scheme for Protecting Sensitive Documents in a Public Cloud Environment Using a Dual Encryption technique," 2022 8th International Conference on Smart Structures and Systems (ICSSS), 2022, pp. 1-7, doi: 10.1109/ICSSS54381.2022.9782195.

Vijay, Siddiqui, S.T., Ritu, Kumar, R.A., Kumar, A., Umamaheswararao, S., Dudiki, N., Reddy, Y.V. and Dekeba, K., 2022. Intertwine Connection-Based Routing Path Selection for Data Transmission in Mobile Cellular Networks and Wireless Sensor Networks. Wireless Communications and Mobile Computing, 2022, pp.1-9.

Khan, M.A., Kumar, N., Mohsan, S.A.H., Khan, W.U., Nasralla, M.M., Alsharif, M.H., Żywiołek, J. and Ullah, I., 2022. Swarm of UAVs for network management in 6G: A technical review. IEEE Transactions on Network and Service Management.

Ismail, L. and Buyya, R., 2022. Artificial intelligence applications and self-learning 6G networks for smart cities digital ecosystems: Taxonomy, challenges, and future directions. Sensors, 22(15), p.5750.

Zhang, F., Zhang, Y., Lu, W., Gao, Y., Gong, Y. and Cao, J., 2022. 6G-enabled smart agriculture: A review and prospect. Electronics, 11(18), p.2845.

Chishti, A.R., Aziz, A., Qureshi, M.A., Abbasi, M.N., Algarni, A.M., Zerguine, A., Hussain, N. and Hussain, R., 2022. Optically transparent antennas: A review of the state-of-the-art, innovative solutions and future trends. Applied Sciences, 13(1), p.210.

Prashar, D., Rashid, M., Siddiqui, S.T., Kumar, D., Nagpal, A., AlGhamdi, A.S. and Alshamrani, S.S., 2021. SDSWSN—a secure approach for a hop-based localization algorithm using a digital signature in the wireless sensor network. Electronics, 10(24), p.3074.

Asim, J., Khan, A.S., Saqib, R.M., Abdullah, J., Ahmad, Z., Honey, S., Afzal, S., Alqahtani, M.S. and Abbas, M., 2022. Blockchain-based multifactor authentication for future 6G cellular networks: A systematic review. Applied Sciences, 12(7), p.3551.

Mahmood, M.R., Matin, M.A., Sarigiannidis, P. and Goudos, S.K., 2022. A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access, 10, pp.87535-87562.

Alraih, S., Shayea, I., Behjati, M., Nordin, R., Abdullah, N.F., Abu-Samah, A. and Nandi, D., 2022. Revolution or evolution? Technical requirements and considerations towards 6G mobile communications. Sensors, 22(3), p.762.

Duong, T.Q., Ansere, J.A., Narottama, B., Sharma, V., Dobre, O.A. and Shin, H., 2022. Quantum-inspired machine learning for 6G: Fundamentals, security, resource allocations, challenges, and future research directions. IEEE Open Journal of Vehicular Technology, 3, pp.375-387.

Heidari, A., Navimipour, N.J. and Unal, M., 2022. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustainable Cities and Society, p.104089.

Pattnaik, S.K., Samal, S.R., Bandopadhaya, S., Swain, K., Choudhury, S., Das, J.K., Mihovska, A. and Poulkov, V., 2022. Future wireless communication technology towards 6g IoT: an application-based analysis of IoT in real-time location monitoring of employees inside underground mines by using BLE. Sensors, 22(9), p.3438.

A. Poonguzhali, G. Premalatha, A. Abinaya, R. Thiagarajan, R. Krishnamoorthy and S. Arun, "Authorization Method of Control in Android Application Using Adminio with Context-Based Access Devices," 2022 8th International Conference on Smart Structures and Systems (ICSSS), 2022, pp. 1-6, doi: 10.1109/ICSSS54381.2022.9782204.

Imoize, A.L., Obakhena, H.I., Anyasi, F.I. and Sur, S.N., 2022. A review of energy efficiency and power control schemes in ultra-dense cell-free massive mimo systems for sustainable 6g wireless communication. Sustainability, 14(17), p.11100.

Adel, A., 2022. Future of industry 5.0 in society: Human-centric solutions, challenges and prospective research areas. Journal of Cloud Computing, 11(1), pp.1-15.

Sigov, A., Ratkin, L., Ivanov, L.A. and Xu, L.D., 2022. Emerging enabling technologies for industry 4.0 and beyond. Information Systems Frontiers, pp.1-11.

Putra, G.D., Dedeoglu, V., Kanhere, S.S. and Jurdak, R., 2022. Toward blockchain-based trust and reputation management for trustworthy 6G networks. IEEE Network, 36(4), pp.112-119.

Siddiqui, M.U.A., Qamar, F., Tayyab, M., Hindia, M.N., Nguyen, Q.N. and Hassan, R., 2022. Mobility management issues and solutions in 5G-and-beyond networks: a comprehensive review. Electronics, 11(9), p.1366.

A. D. Gupta, K. Sathiyasekar, R. Krishnamoorthy, S. Arun, R. Thiyagarajan and S. Padmapriya, "Proposed GA Algorithm with H-Heed Protocol for Network Optimization using Machine learning in Wireless Sensor Networks," 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022, pp. 1402-1408, doi: 10.1109/ICAIS53314.2022.9743120.

Chen, H., Sarieddeen, H., Ballal, T., Wymeersch, H., Alouini, M.S. and Al-Naffouri, T.Y., 2022. A tutorial on terahertz-band localization for 6G communication systems. IEEE Communications Surveys & Tutorials, 24(3), pp.1780-1815.

NavedAlam, Haneef Khan, Shams Tabrez Siddiqui, “Interference Limited Area based Resource Allocation for Device to Device Communication in an Underlaying Cellular Network”, Ad Hoc & Sensor Wireless Networks, AHSWN 56.3-4, p. 253-272, https://www.oldcitypublishing.com/journals/ahswn-home/ahswn-issue-contents/ahswn-volume-56-number-3-4-2023/21126-2/

Yadala, S., Pundru, C.S.R. and Solanki, V.K., 2023, March. A Novel Private Encryption Model in IoT Under Cloud Computing Domain. In The International Conference on Intelligent Systems & Networks (pp. 263-270). Singapore: Springer Nature Singapore.

S. Srivastava, R. Thiagarajan, R. Krishnamoorthy, Balajivijayan, S. Arun and S. Padmapriya, "Management of Encrypted Data and De-Duplication of Big Data in Cloud Computing," 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021, pp. 1457-1460, doi: 10.1109/ICAC3N53548.2021.9725422.

Huang, Y., Jin, J., Lou, M., Dong, J., Wu, D., Xia, L., Wang, S. and Zhang, X., 2022. 6G mobile network requirements and technical feasibility study. China Communications, 19(6), pp.123-136.

Nayak, S., Patgiri, R., Waikhom, L. and Ahmed, A., 2022. A review on edge analytics: Issues, challenges, opportunities, promises, future directions, and applications. Digital Communications and Networks.

Nassef, O., Sun, W., Purmehdi, H., Tatipamula, M. and Mahmoodi, T., 2022. A survey: Distributed Machine Learning for 5G and beyond. Computer Networks, 207, p.108820.

Salem, M., Elkaseer, A., El-Maddah, I.A., Youssef, K.Y., Scholz, S.G. and Mohamed, H.K., 2022. Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects. Sensors, 22(17), p.6625.

Published

2023-11-13

Issue

Section

Special Issue 2023 - 6G System Technologies