Microwave parameters of components of shielding composites. Part 2: Mechanisms of microwave absorption
DOI:
https://doi.org/10.3103/S0735272723010041Keywords:
absorption efficiency, EM wave, Mechanisms of microwave absorptionAbstract
The paper analyzes the absorption efficiency of electromagnetic (EM) radiation by components of microwave shielding composites. EM wave in the absorbing material loses its energy during the interaction with molecular and electron structure of material. The mechanisms of wave absorption in dielectrics, semiconductors, magnetics and metals are considered with due regard for dimensional effects. It has been established that the absorption capacity of semiconductor and magnetic fillers of composites decreases to the extent of frequency rise. The recommendations for the selection of absorbing components of shielding composites intended for different frequency ranges are provided.
References
F. Kremer, A. Schönhals, Eds., Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, doi: https://doi.org/10.1007/978-3-642-56120-7.
M. T. Sebastian, Dielectric Materials for Wireless Communication. Amsterdam: Elsevier, 2008, doi: https://doi.org/10.1016/B978-0-08-045330-9.X0001-5.
J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, “Progress in polymers and polymer composites used as efficient materials for EMI shielding,” Nanoscale Adv., vol. 3, no. 1, pp. 123–172, 2021, doi: https://doi.org/10.1039/D0NA00760A.
Y. Poplavko, Y. Didenko, D. Tatarchuk, “Microwave parameters of components of shielding composites. Part 1: Mechanisms of microwave reflection,” Radioelectron. Commun. Syst., vol. 65, no. 11, pp. 563–573, 2022, doi: https://doi.org/10.3103/S0735272722120020.
A. Choudhary, S. Pal, G. Sarkhel, “Broadband millimeter-wave absorbers: a review,” Int. J. Microw. Wirel. Technol., vol. 15, no. 2, pp. 347–363, 2023, doi: https://doi.org/10.1017/S1759078722000162.
A. Prokopchuk, I. Zozulia, Y. Didenko, D. Tatarchuk, H. Heuer, Y. Poplavko, “Dielectric permittivity model for polymer–filler composite materials by the example of Ni- and graphite-filled composites for high-frequency absorbing coatings,” Coatings, vol. 11, no. 2, p. 172, 2021, doi: https://doi.org/10.3390/coatings11020172.
X. Zeng, X. Cheng, R. Yu, G. D. Stucky, “Electromagnetic microwave absorption theory and recent achievements in microwave absorbers,” Carbon, vol. 168, pp. 606–623, 2020, doi: https://doi.org/10.1016/j.carbon.2020.07.028.
B. Vagananthan, Y. S. Lee, K. Y. You, H. S. Gan, F. H. Wee, “Investigate the effect of dielectric properties on microwave absorption of pyramidal microwave absorber,” J. Microwaves, Optoelectron. Electromagn. Appl., vol. 21, no. 2, pp. 328–336, 2022, doi: https://doi.org/10.1590/2179-10742022v21i2257631.
M. F. Elmahaishi, R. S. Azis, I. Ismail, F. D. Muhammad, “A review on electromagnetic microwave absorption properties: their materials and performance,” J. Mater. Res. Technol., vol. 20, pp. 2188–2220, 2022, doi: https://doi.org/10.1016/j.jmrt.2022.07.140.
D. D. Tatarchuk, Y. M. Poplavko, V. Kazmirenko, O. V. Borisov, Y. V. Didenko, “Composites based on dielectric materials for microwave engineering,” Radioelectron. Commun. Syst., vol. 59, no. 2, pp. 74–82, 2016, doi: https://doi.org/10.3103/S0735272716020047.
Y. Xu et al., “Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design,” Mater. Horizons, vol. 9, no. 2, pp. 708–719, 2022, doi: https://doi.org/10.1039/D1MH01346G.
M. Perez-Escribano, E. Marquez-Segura, “Parameters characterization of dielectric materials samples in microwave and millimeter-wave bands,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 3, pp. 1723–1732, 2021, doi: https://doi.org/10.1109/TMTT.2020.3045211.
Y. Poplavko, Electronic Materials: Principles and Applied Science. Amsterdam: Elsevier, 2018, uri: https://www.elsevier.com/books/electronic-materials/poplavko/978-0-12-815255-3.