Fault recognition and reconfiguration for three-phase five-level cascaded H-bridge multilevel inverter
DOI:
https://doi.org/10.3103/S073527272206005XKeywords:
Cascaded H-bridge Multi-level inverter, space-vector modulation technique, fault recognition, fuzzy logic, fault reconfiguration, auxiliary inverter moduleAbstract
The paper presents the fault recognition and reconfiguration technique for three-phase five-level cascaded H-bridge multilevel inverter operation. The multilevel inverter operation is carried out by using space vector modulation technique. Open switch fault is very frequent in multilevel inverter, which is located using fuzzy logic whereas the fault reconfiguration is done by adding one auxiliary inverter module with the main multilevel inverter which operates in a faulty condition and regulates the output voltage. The operation of auxiliary inverter module is according to the switching state provided which is based on a fault that occurs in a particular switch. In this method continuous operation of the main multilevel inverter is possible even in the fault condition with only one or two voltage level missed at the output. The continuous operation of multilevel inverter with reduced THD is achieved without using filter which is affirmed by MATLAB® simulation.
References
L. Franquelo, J. Rodriguez, J. Leon, S. Kouro, R. Portillo, M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, 2008, doi: https://doi.org/10.1109/MIE.2008.923519.
J. Rodriguez, J.-S. Lai, F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, 2002, doi: https://doi.org/10.1109/TIE.2002.801052.
R. R. Kumar, “Comparison of PWM techniques and inverter performance,” IOSR J. Electr. Electron. Eng., vol. 4, no. 1, pp. 18–22, 2013, doi: https://doi.org/10.9790/1676-0411822.
K. Deepa, P. A. Kumar, V. S. Krishna, P. N. K. Rao, A. Mounika, D. Medhini, “A study of comparative analysis of different PWM techniques,” in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), 2017, pp. 1144–1149, doi: https://doi.org/10.1109/SmartTechCon.2017.8358548.
K. V. Kumar, P. A. Michael, J. P. John, S. S. Kumar, “Simulation and comparison of SPWM and SVPWM control for three phase inverter,” ARPN J. Eng. Appl. Sci., vol. 5, no. 7, pp. 61–74, 2010.
H. Hu, W. Yao, Z. Lu, “Design and implementation of three-level space vector PWM IP core for FPGAs,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2234–2244, 2007, doi: https://doi.org/10.1109/TPEL.2007.909296.
I. Ahmed, V. B. Borghate, A. Matsa, P. M. Meshram, H. M. Suryawanshi, M. A. Chaudhari, “Simplified space vector modulation techniques for multilevel inverters,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8483–8499, 2016, doi: https://doi.org/10.1109/TPEL.2016.2520078.
J.-S. Hu, J.-N. Lin, H.-C. Chen, “A discontinuous space vector PWM algorithm in abc reference frame for multilevel three-phase cascaded H-bridge voltage source inverters,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8406–8414, 2017, doi: https://doi.org/10.1109/TIE.2017.2703675.
R. R. Krishna, K. Gopakumar, M. Boby, A. K. Yadav, L. G. Franquelo, S. S. Williamson, “Multilevel 24-sided polygonal voltage-space-vector structure generation for an IM drive using a single DC source,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1023–1031, 2019, doi: https://doi.org/10.1109/TIE.2018.2831189.
D. Miljković, “Fault detection methods: A literature survey,” in 2011 Proceedings of the 34th International Convention MIPRO, 2011, uri: https://ieeexplore.ieee.org/document/5967153.
F. Asghar, M. Talha, S. H. Kim, “Comparative study of three fault diagnostic methods for three phase inverter with induction motor,” Int. J. Fuzzy Log. Intell. Syst., vol. 17, no. 4, pp. 245–256, 2017, doi: https://doi.org/10.5391/IJFIS.2017.17.4.245.
F. Asghar, M. Talha, S. H. Kim, “Neural network based fault detection and diagnosis system for three-phase inverter in variable speed drive with induction motor,” J. Control Sci. Eng., vol. 2016, pp. 1–12, 2016, doi: https://doi.org/10.1155/2016/1286318.
H. Liu, P. C. Loh, F. Blaabjerg, “Sub-module short circuit fault diagnosis in modular multilevel converter based on wavelet transform and adaptive neuro fuzzy inference system,” Electr. Power Components Syst., vol. 43, no. 8–10, pp. 1080–1088, 2015, doi: https://doi.org/10.1080/15325008.2015.1022668.
S. Boukadida, S. Gdaim, A. Mtiba, “Sensor fault detection and isolation based on artificial neural networks and fuzzy logic applicated on induction motor for electrical vehicle,” Int. J. Power Electron. Drive Syst., vol. 8, no. 2, p. 601, 2017, doi: https://doi.org/10.11591/ijpeds.v8.i2.pp601-611.
M. Thirumarimurugan, N. Bagyalakshmi, P. Paarkavi, “Comparison of fault detection and isolation methods: A review,” in 2016 10th International Conference on Intelligent Systems and Control (ISCO), 2016, pp. 1–6, doi: https://doi.org/10.1109/ISCO.2016.7726957.
P. Lezana, J. Pou, T. A. Meynard, J. Rodriguez, S. Ceballos, F. Richardeau, “Survey on fault operation on multilevel inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2207–2218, 2010, doi: https://doi.org/10.1109/TIE.2009.2032194.
B. Lu, S. K. Sharma, “A literature review of IGBT fault diagnostic and protection methods for power inverters,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1770–1777, 2009, doi: https://doi.org/10.1109/TIA.2009.2027535.
M. A. Rodriguez-Blanco, A. Vazquez-Perez, L. Hernandez-Gonzalez, V. Golikov, J. Aguayo-Alquicira, M. May-Alarcon, “Fault detection for IGBT using adaptive thresholds during the turn-on transient,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1975–1983, 2015, doi: https://doi.org/10.1109/TIE.2014.2364154.
U.-M. Choi, F. Blaabjerg, K.-B. Lee, “Study and handling methods of power IGBT module failures in power electronic converter systems,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2517–2533, 2015, doi: https://doi.org/10.1109/TPEL.2014.2373390.
Z. Wang, X. Shi, L. M. Tolbert, F. Wang, B. J. Blalock, “A di/dt feedback-based active gate driver for smart switching and fast overcurrent protection of IGBT modules,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3720–3732, 2014, doi: https://doi.org/10.1109/TPEL.2013.2278794.
W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke, H. S. Krishnamoorthy, “Survey on fault-tolerant techniques for power electronic converters,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6319–6331, 2014, doi: https://doi.org/10.1109/TPEL.2014.2304561.
W. Song, A. Q. Huang, “Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2700–2708, 2010, doi: https://doi.org/10.1109/TIE.2009.2036019.
M. Aleenejad, H. Iman‐Eini, S. Farhangi, “Modified space vector modulation for fault‐tolerant operation of multilevel cascaded H‐bridge inverters,” IET Power Electron., vol. 6, no. 4, pp. 742–751, 2013, doi: https://doi.org/10.1049/iet-pel.2012.0543.
L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura, “Fault-tolerant operation of a battery-energy-storage system based on a multilevel cascade PWM converter with star configuration,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2386–2396, 2010, doi: https://doi.org/10.1109/TPEL.2010.2047407.
H. Salimian, H. Iman-Eini, “Fault-tolerant operation of three-phase cascaded H-bridge converters using an auxiliary module,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1018–1027, 2017, doi: https://doi.org/10.1109/TIE.2016.2613983.
S. Ouni et al., “Improvement of post-fault performance of a cascaded H-bridge multilevel inverter,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2779–2788, 2017, doi: https://doi.org/10.1109/TIE.2016.2632058.
M. M. Haji‐Esmaeili, M. Naseri, H. Khoun‐Jahan, M. Abapour, “Fault‐tolerant structure for cascaded H‐bridge multilevel inverter and reliability evaluation,” IET Power Electron., vol. 10, no. 1, pp. 59–70, 2017, doi: https://doi.org/10.1049/iet-pel.2015.1025.
H. K. Jahan, F. Panahandeh, M. Abapour, S. Tohidi, “Reconfigurable multilevel inverter with fault-tolerant ability,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7880–7893, 2018, doi: https://doi.org/10.1109/TPEL.2017.2773611.
A. A. Stonier, B. Lehman, “An intelligent-based fault-tolerant system for solar-fed cascaded multilevel inverters,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1047–1057, 2018, doi: https://doi.org/10.1109/TEC.2017.2786299.
S. Rahman, M. Meraj, A. Iqbal, L. Ben‐Brahim, R. Alammari, H. Abu‐Rub, “Fault tolerant single‐phase capacitor start capacitor run induction motor powered with cascaded multilevel quasi impedance source inverter,” J. Eng., vol. 2019, no. 17, pp. 4036–4040, 2019, doi: https://doi.org/10.1049/joe.2018.8042.
H. Iman-Eini†, S. Farhangi, J.-L. Schanen, M. Khakbazan-Fard, “A fault-tolerant control strategy for cascaded H-bridge multilevel rectifiers,” J. Power Electron., vol. 10, no. 1, pp. 34–42, 2010, uri: http://koreascience.or.kr/article/JAKO201012368302236.pdf.
M. Aleenejad, S. Jafarishiadeh, H. Mahmoudi, R. Ahmadi, “Reduced number of auxiliary H‐bridge power cells for post‐fault operation of three phase cascaded H‐bridge inverter,” IET Power Electron., vol. 12, no. 11, pp. 2923–2931, 2019, doi: https://doi.org/10.1049/iet-pel.2018.5073.