Theoretical research of differential oscillator

Authors

DOI:

https://doi.org/10.3103/S0735272722050041

Abstract

This paper presents a study of classical circuit of differential oscillator using rigorous methods of nonlinear theory of electrical oscillations. It is proposed a mathematical model of such oscillator based on the Kirchhoff’s laws application. It is implemented by pass to the model of single-circuit LC oscillator, equivalent to a differential one. A method is developed for such transition with development of nonlinear characteristic of the amplifying element of the equivalent based on nonlinear characteristics of the amplifying elements of a differential oscillator. The mathematical model of the equivalent oscillator is simple and accurate. In case of small values of a small parameter, the traditional method can be used for its analysis, for example, the method of slowly varying amplitudes. For insufficiently small values of a small parameter, expressions are obtained to describe the changes in the amplitude and frequency in oscillations establishing process. The results presented can be useful in the development of various devices based on a differential self-excited oscillator.

References

A. Hajimiri, T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, 1999, doi: https://doi.org/10.1109/4.760384.

L. B. Oliveria, J. R. Fernandes, M. M. Silva, “Analysis and design of quadrature LC oscillators,” in XXI Conference on Design of Circuits and Integrated Systems, 2006.

A. . Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, 2007, doi: https://doi.org/10.1109/JSSC.2007.903047.

L. B. Oliveira, J. R. Fernandes, I. M. Filanovsky, C. J. M. Verhoeven, M. M. Silva, Analysis and Design of Quadrature Oscillators. Dordrecht: Springer Netherlands, 2008, doi: https://doi.org/10.1007/978-1-4020-8516-1.

A. Buonomo, A. Lo Schiavo, “Modelling and analysis of differential VCOs,” Int. J. Circuit Theory Appl., vol. 32, no. 3, pp. 117–131, 2004, doi: https://doi.org/10.1002/cta.270.

A. Buonomo, “Nonlinear analysis of voltage-controlled oscillators: a systematic approach,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 6, pp. 1659–1670, 2008, doi: https://doi.org/10.1109/TCSI.2008.917996.

S. Daneshgar, O. De Feo, M. P. Kennedy, “Observations concerning the locking range in a complementary differential LC injection-locked frequency divider—Part I: qualitative analysis,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 57, no. 1, pp. 179–188, 2010, doi: https://doi.org/10.1109/TCSI.2009.2018930.

A. Buonomo, A. Lo Schiavo, “Finding the tuning curve of a CMOS—LC VCO,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 55, no. 9, pp. 887–891, 2008, doi: https://doi.org/10.1109/TCSII.2008.923422.

A. Buonomo, A. Lo Schiavo, “A nonlinear analysis of differential LC injection-locked frequency dividers,” in 2011 20th European Conference on Circuit Theory and Design (ECCTD), 2011, pp. 242–245, doi: https://doi.org/10.1109/ECCTD.2011.6043327.

M. I. Ionita, D. Cordeau, J. M. Paillot, M. Iordache, “Analysis and design of an array of two differential oscillators coupled through a resistive network,” in 2011 20th European Conference on Circuit Theory and Design (ECCTD), 2011, pp. 73–76, doi: https://doi.org/10.1109/ECCTD.2011.6043612.

A. Buonomo, A. Lo Schiavo, “Analytical approach to the study of injection-locked frequency dividers,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 1, pp. 51–62, 2013, doi: https://doi.org/10.1109/TCSI.2012.2215716.

A. Buonomo, A. Lo Schiavo, “The effect of parameter mismatches on the output waveform of an LC-VCO,” Int. J. Circuit Theory Appl., vol. 38, no. 5, pp. 487–501, 2009, doi: https://doi.org/10.1002/cta.580.

A. Buonomo, A. Lo Schiavo, “Modeling, analysis, and experimental validation of frequency dividers with direct injection,” J. Electr. Comput. Eng., vol. 2013, pp. 1–7, 2013, doi: https://doi.org/10.1155/2013/365692.

A. Buonomo, M. P. Kennedy, A. Lo Schiavo, “On the synchronization condition for superharmonic coupled QVCOs,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 58, no. 7, pp. 1637–1646, 2011, doi: https://doi.org/10.1109/TCSI.2011.2123370.

T. Djurhuus, V. Krozer, J. Vidkjaer, T. K. Johansen, “Nonlinear analysis of a cross-coupled quadrature harmonic oscillator,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 52, no. 11, pp. 2276–2285, 2005, doi: https://doi.org/10.1109/TCSI.2005.853586.

A. Buonomo, A. Lo Schiavo, “Divide-by-three injection-locked frequency dividers with direct forcing signal,” J. Electr. Comput. Eng., vol. 2013, pp. 1–9, 2013, doi: https://doi.org/10.1155/2013/145314.

N. Henngam, J. Mahattanakul, “Analysis of voltage imbalance in double differential pairs LC oscillator,” in 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2019, pp. 157–160, doi: https://doi.org/10.1109/APCCAS47518.2019.8953141.

A. Bhat, N. Krishnapura, “Low 1/f3 phase noise quadrature LC VCOs,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, no. 7, pp. 2127–2138, 2018, doi: https://doi.org/10.1109/TCSI.2017.2782247.

M. Bagheri, “Design techniques in CMOS LC quadrature oscillators for broadband applications,” 2018. uri: https://escholarship.org/uc/item/1d38n45w.

S.-Y. Lee, C.-J. Chiu, H.-Y. Lee, “Systematic analysis of quadrature VCO with capacitive source degeneration coupling and spontaneous transconductance matching techniques,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 4, pp. 517–521, 2019, doi: https://doi.org/10.1109/TCSII.2018.2862150.

X. Ding, H. Yu, B. Yu, Z. Xu, Q. J. Gu, “A superharmonic injection based G-band quadrature VCO in CMOS,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 345–348, doi: https://doi.org/10.1109/IMS30576.2020.9223816.

A. Zhou, X. Ding, C. C. Boon, L. Siek, Y. Liang, Y. Dong, “A low-power quadrature LO generator with mutual power-supply rejection technique,” IEEE Access, vol. 9, pp. 137241–137248, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3116160.

A. A. Kharkevich, Non-Linear and Parametric Phenomena in Radio Engineering, [in Russian]. Moscow: GITTL, 1956.

V. V. Rapin, “Solution of reduced equations of injection-locked oscillator,” Radioelectron. Commun. Syst., vol. 62, no. 6, pp. 271–285, 2019, doi: https://doi.org/10.3103/S0735272719060037.

Circuit diagram of self-excited oscillator

Published

2022-05-22

Issue

Section

Research Articles