Analysis of dual-mode resonators from transmission line segments
DOI:
https://doi.org/10.3103/S0735272722040033Abstract
Three groups of resonance equations for various resonators on transmission lines (TL) with lumped elements are proposed. They are based on a two-port network parameters. Using these equations, it is established that a third of all resonant frequencies in the known dual-mode stub resonators analyzed using even and odd modes, were not previously taken into account. The proposed equations made it possible to design two new dual-mode resonators from TL segments with all short-circuited ends, which are practically useful. It is shown that the widely used method of even-odd modes cannot be used to describe the properties of new resonators. In the same time, these proposed resonance equations describe new properties of some dual-mode resonators. In particular, dual-mode resonators with a quarter-wave stub, in addition to dual-mode oscillations, also have single-mode oscillations. These two types of oscillations alternate with each other. In contrast, only dual-mode oscillations exist in short-stub resonators. Theoretical results are confirmed by EM simulation.
References
D. Psychogiou, R. Gomez-Garcia, D. Peroulis, “RF wide-band bandpass filter with dynamic in-band multi-interference suppression capability,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 7, pp. 898–902, 2018, doi: https://doi.org/10.1109/TCSII.2017.2726145.
W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, “High selectivity wideband balanced filters with multiple transmission zeros,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 10, pp. 1182–1186, 2017, doi: https://doi.org/10.1109/TCSII.2015.2482398.
R. Gomez-Garcia, R. Loeches-Sanchez, D. Psychogiou, D. Peroulis, “Multi-stub-loaded differential-mode planar multiband bandpass filters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 3, pp. 271–275, 2018, doi: https://doi.org/10.1109/TCSII.2017.2688336.
A. Zakharov, S. Rozenko, M. Ilchenko, “Varactor-tuned microstrip bandpass filter with loop hairpin and combline resonators,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 6, pp. 953–957, 2019, doi: https://doi.org/10.1109/TCSII.2018.2873227.
A. Zakharov, M. Ilchenko, “Circuit function characterizing tunability of resonators,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 1, pp. 98–107, 2020, doi: https://doi.org/10.1109/TCSI.2019.2940066.
A. Zakharov, M. Ilchenko, “Unloaded quality factor of transmission line resonators with capacitors,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 7, pp. 2204–2215, 2020, doi: https://doi.org/10.1109/TCSI.2020.2971112.
M. Yuceer, “A reconfigurable microwave combline filter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 63, no. 1, pp. 84–88, 2016, doi: https://doi.org/10.1109/TCSII.2015.2504010.
W.-J. Zhou, J.-X. Chen, “High-selectivity tunable balanced bandpass filter with constant absolute bandwidth,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 8, pp. 917–921, 2017, doi: https://doi.org/10.1109/TCSII.2016.2621120.
G. Megla, Dezimeterwellentechnik: Theorie Und Technik Der Dezimeterschaltungen, 4th ed. Leipzig: Fachbuchverlag, 1955.
A. Zakharov, M. Ilchenko, “Coupling coefficients between resonators in stripline combline and pseudocombline bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 7, pp. 2679–2690, 2020, doi: https://doi.org/10.1109/TMTT.2020.2988866.
A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, “Trisection bandpass filter with mixed cross-coupling and different paths for signal propagation,” IEEE Microw. Wirel. Components Lett., vol. 30, no. 1, pp. 12–15, 2020, doi: https://doi.org/10.1109/LMWC.2019.2957207.
S. C. Lin, Y. S. Lin, C. H. Chen, “Extended-stopband bandpass filter using both half- and quarter-wavelength resonators,” IEEE Microw. Wirel. Components Lett., vol. 16, no. 1, pp. 43–45, 2006, doi: https://doi.org/10.1109/LMWC.2005.860014.
J. T. Kuo, E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554–1559, 2003, doi: https://doi.org/10.1109/TMTT.2003.810138.
A. Zakharov, “Parametric and structural-parametric synthesis of nonuniform transmission line resonators,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 3, pp. 1055–1067, 2021, doi: https://doi.org/10.1109/TCSI.2020.3044925.
A. Zakharov, S. Rozenko, L. Pinchuk, S. Litvintsev, “Microstrip quazi-elliptic bandpass filter with two pairs of antiparallel mixed-coupled SIRs,” IEEE Microw. Wirel. Components Lett., vol. 31, no. 5, pp. 433–436, 2021, doi: https://doi.org/10.1109/LMWC.2021.3065394.
M. Makimoto, S. Yamashita, “Compact bandpass filters using stepped impedance resonators,” Proc. IEEE, vol. 67, no. 1, pp. 16–19, 1979, doi: https://doi.org/10.1109/PROC.1979.11196.
M. Makimoto, S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413–1417, 1980, doi: https://doi.org/10.1109/TMTT.1980.1130258.
A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, “Hairpin resonators in varactor-tuned microstrip bandpass filters,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 10, pp. 1874–1878, 2020, doi: https://doi.org/10.1109/TCSII.2019.2953247.
A. Zakharov, “Transmission zeros of trisection and quadruplet bandpass filters with mixed cross coupling,” IEEE Trans. Microw. Theory Tech., vol. 69, no. 1, pp. 89–100, 2021, doi: https://doi.org/10.1109/TMTT.2020.3034663.
L. Gao, T.-W. Lin, G. M. Rebeiz, “Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 10, pp. 3831–3842, 2019, doi: https://doi.org/10.1109/TCSI.2019.2914170.
A. Zakharov, S. Litvintsev, M. Ilchenko, “Transmission line tunable resonators with intersecting resonance regions,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 4, pp. 660–664, 2020, doi: https://doi.org/10.1109/TCSII.2019.2922429.
I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, p. 302, 1972, doi: https://doi.org/10.1049/el:19720223.
M. Makimoto, M. Sagawa, “Varactor tuned bandpass filters using microstrip-line ring resonators,” in MTT-S International Microwave Symposium Digest, 1986, vol. 86, pp. 411–414, doi: https://doi.org/10.1109/MWSYM.1986.1132206.
H. Yabuki, M. Sagawa, M. Matsuo, M. Makimoto, “Stripline dual-mode ring resonators and their application to microwave devices,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 5, pp. 723–729, 1996, doi: https://doi.org/10.1109/22.493926.
M.-F. Lei, H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 861–867, 2005, doi: https://doi.org/10.1109/TMTT.2004.842504.
H.-J. Tsai, N.-W. Chen, S.-K. Jeng, “Center frequency and bandwidth controllable microstrip bandpass filter design using loop-shaped dual-mode resonator,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3590–3600, 2013, doi: https://doi.org/10.1109/TMTT.2013.2280129.
C.-H. Wang, Y.-S. Lin, C. H. Chen, “Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles,” in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), 2004, pp. 1979–1982, doi: https://doi.org/10.1109/MWSYM.2004.1338999.
C.-H. Wu, Y.-S. Lin, C.-H. Wang, C. H. Chen, “Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 540–546, 2006, doi: https://doi.org/10.1109/TMTT.2005.862710.
R.-J. Mao, X.-H. Tang, F. Xiao, “Novel compact quarter-wavelength resonator filter using lumped coupling elements,” IEEE Microw. Wirel. Components Lett., vol. 17, no. 2, pp. 112–114, 2007, doi: https://doi.org/10.1109/LMWC.2006.890332.
L. Athukorala, D. Budimir, “Compact dual-mode open loop microstrip resonators and filters,” IEEE Microw. Wirel. Components Lett., vol. 19, no. 11, pp. 698–700, 2009, doi: https://doi.org/10.1109/LMWC.2009.2032003.
J.-S. Hong, H. Shaman, Y.-H. Chun, “Dual-mode microstrip open-loop resonators and filters,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764–1770, 2007, doi: https://doi.org/10.1109/TMTT.2007.901592.
M.-S. Chung, I.-S. Kim, S.-W. Yun, “Varactor-tuned hairpin bandpass filter with an attenuation pole,” in 2005 Asia-Pacific Microwave Conference Proceedings, 2005, vol. 4, pp. 1–4, doi: https://doi.org/10.1109/APMC.2005.1606748.
Y.-H. Chun, J.-S. Hong, “Electronically reconfigurable dual-mode microstrip open-loop resonator filter,” IEEE Microw. Wirel. Components Lett., vol. 18, no. 7, pp. 449–451, 2008, doi: https://doi.org/10.1109/LMWC.2008.924922.
W. Tang, J.-S. Hong, “Varactor-tuned dual-mode bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2213–2219, 2010, doi: https://doi.org/10.1109/TMTT.2010.2052958.
H.-J. Tsai, B.-C. Huang, N.-W. Chen, S.-K. Jeng, “A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator,” IEEE Microw. Wirel. Components Lett., vol. 24, no. 5, pp. 297–299, 2014, doi: https://doi.org/10.1109/LMWC.2014.2306893.
D. Lu, X. Tang, N. S. Barker, M. Li, T. Yan, “Synthesis-applied highly selective tunable dual-mode BPF with element-variable coupling matrix,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 4, pp. 1804–1816, 2018, doi: https://doi.org/10.1109/TMTT.2017.2783376.
E. A. Guillemin, Synthesis of Passive Networks: Theory and Methods Appropriate to the Realization and Approximation Problems. New York: Wiley, 1959.
G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York: Artech House Books, 1980.