Optimum septum polarizer design for various fractional bandwidths
DOI:
https://doi.org/10.3103/S0735272720010021Keywords:
septum polarizer, orthomode transducer, circular polarization, fractional frequency bandwidth, cross-polarization discrimination, isolation, return lossesAbstract
The numerical optimization results of constant thickness septum polarizer’s performances for various operating fractional bandwidths (FBW) are presented in the paper. The polarizer’s structure includes a common input square waveguide, a constant thickness septum with several steps, and two output rectangular waveguides. The polarizer design of 2-, 3-, 4-, and 5-step septums is optimized for different narrow and wide operating FBWs to obtain the simultaneously maximum values of cross-polarization discrimination and isolation between rectangular ports and return losses. The optimized dimensions of the septums for FBW = 5, 10, 15, 18, and 20% are presented. Based on the obtained results, Q- and K-band prototypes were manufactured and their performances were measured. The measurements of the prototypes are in good agreement with simulations. These optimization results can be widely used for the development of septum polarizers and prediction of their performances for various FBW in the required frequency range.References
J. Kim, S. Yoon, E. Jung, J. W. Lee, T. K. Lee, and W. K. Lee, “Triangular-shaped stepped septum polarizer for satellite communication,” IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), p.854, 2011. DOI: http://doi.org/10.1109/APS.2011.5996409.
J. C. Angevain and N. J. G. Fonseca, “Waveguide septum polarizer shaped with Legendre polynomials,” Proc. of 2017 11th European Conf. on Antennas and Propagation, EUCAP 2017. 2017, p.2286-2290. DOI: https://doi.org/10.23919/EuCAP.2017.7928324.
C. A. Leal-Sevillano, K. B. Cooper, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “A 225 GHz circular polarization waveguide duplexer based on a septum orthomode transducer polarizer,” IEEE Trans. Terahertz Sci. Technol., v.3, n.5, p.574, 2013. DOI: https://doi.org/10.1109/TTHZ.2013.2264317.
W. Zhong, B. Li, Q. Fan, and Z. Shen, “X-band compact septum polarizer design,” ICMTCE2011 - Proceedings 2011 IEEE Int. Conf. on Microwave Technology and Computational Electromagnetics, 2011, p.167-170. DOI: http://doi.org/10.1109/ICMTCE.2011.5915191.
J. A. Ruiz-Cruz, M. M. Fahmi, M. Daneshmand, and R. R. Mansour, “Compact reconfigurable waveguide circular polarizer,” IEEE MTT-S Int. Microwave Symp. Dig., 2011. DOI: https://doi.org/10.1109/MWSYM.2011.5972872.
J. A. Ruiz-Cruz, M. M. Fahmi, S. A. Fouladi, and R. R. Mansour, “Waveguide antenna feeders with integrated reconfigurable dual circular polarization,” IEEE Trans. Microw. Theory Tech., v.59, n.12 PART 2, p.3365, Dec. 2011. DOI: https://doi.org/10.1109/TMTT.2011.2170581.
N. Nikolic, A. Weily, I. Kekic, S. L. Smith, and K. W. Smart, “A Septum Polarizer with Integrated Square to Circular Tapered Waveguide Transition,” 2018 IEEE Antennas and Propagation Society Int. Symp. and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings, 2018, p.725-726. DOI: http://doi.org/10.1109/APUSNCURSINRSM.2018.8608909.
F. F. Dubrovka, S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Theory,” Radioelectron. Commun. Syst., v.57, n.1, p.1, 2014. DOI: https://doi.org/10.3103/S0735272714010014.
F. F. Dubrovka, S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Numerical results,” Radioelectron. Commun. Syst., v.57, n.2, p.59, 2014. DOI: https://doi.org/10.3103/S0735272714020010.
S. I. Piltyay, “High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system,” Proc. of 2017 11th Int. Conf. on Antenna Theory and Techniques, ICATT, 24-27 May 2017, Kyiv, Ukraine. IEEE, 2017, p.284-287. DOI: https://doi.org/10.1109/ICATT.2017.7972644.
F. F. Dubrovka, P. Ya. Stepanenko, “Broadband sections of differential phase shift on a corrugated square waveguide,” Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, v.39, n.1, p.3, 1996.