Protection of coherent pulse radars against combined interferences. 1. Modifications of STSP systems and their ultimate performance capabilities

Authors

DOI:

https://doi.org/10.3103/S073527271907001X

Keywords:

combined interference, joint space-time processing, separate space-time processing, separate time-space processing, correlation matrix, Kronecker’s sum, Kronecker’s product, weight vector, combined processing system, iterative procedure for finding the extremum

Abstract

This paper is the first paper of the sequence devoted to modern methods of protection of coherent pulse radars against combined interferences (additive internal noise mixture masking the active jamming and clutter (passive jamming)). It compares the ultimate capabilities of the known and relatively new varieties of the interference protection (anti-jam and anti-clutter) systems under the hypothetical conditions of exact knowledge of statistical characteristics of signals and interferences. The ultimate capabilities of systems are understood in the sense that their efficiency is calculated for the hypothetical conditions of exact knowledge of statistical characteristics of input actions. The obtained estimates determine the upper bounds of efficiency in the real conditions of a priori uncertainty of parameters of signals and interferences. The losses of efficiency related to the transition to simplified systems of space-time signal processing (STSP) are also analyzed. The second paper deals with peculiarities (high-speed) of the considered anti-jam and anti-clutter systems in real conditions of parametric a priori uncertainty that is overcome by using different kinds of estimates of a priori unknown parameters of interferences. The third paper is devoted to the substantiation of general-purpose STSP system based on adaptive lattice filters.

References

SHIRMAN, Y.D. (ed.), Radioelectronic Systems: Fundamentals of Construction and Theory, Handbook, 2nd ed. [in Russian]. Moscow: Radiotekhnika, 2007.

WARD, J. “Space-time adaptive processing for airborne radar,” Technical Report No. 1015, Massachusetts Institute of Technology, Lincoln Laboratory. Dec. 1994.

KLEMM, R. Space-Time Adaptive Processing — Principles and Applications, 1st ed. UK: IEE,Stevenage, Herts., 1998.

KLEMM, R. Principles of Space-Time Adaptive Processing, 3rd ed. in: Radar, Sonar, Navigation and Avionics Series 21, The Institution of Electrical Engineers and Technology. UK, 2006. DOI: https://doi.org/10.1049/PBRA021E.

WIRTH, W.-D. Radar Techniques Using Array Antennas, in: IET Radar, Sonar, Navigation and Avionics Series 10, The Institution of Engineering and Technology. UK, 2013. DOI: https://doi.org/10.1049/PBRA026E.

GUERCI, J.R. Space-Time Adaptive Processing for Radar, 2nd ed. Boston-London: Artech House, 2014.

MELVIN, W.L. “Chapter 12 - Space-time adaptive processing for radar,” Academic Press Library in Signal Processing, v.2, p.595, 2014. DOI: https://doi.org/10.1016/B978-0-12-396500-4.00012-0.

WIDROW, Bernard; STEARNS, Samuel D. Adaptive Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1985.

MONZINGO, Robert A.; HAUPT, Randy L.; MILLER, Thomas W. Introduction to Adaptive Arrays, 2nd ed. NC 27615, SciTech Publishing, Inc. Raleigh, 2011. DOI: https://doi.org/10.1049/SBEW046E.

WORTHAM, C. Space-Time Adaptive Processing for Ground Surveillance Radar. Georgia Institute of Technology, May 2007.

XU, Jingwei; ZHU, Shengqi; LIAO, Guisheng. “Space-time-range adaptive processing for airborne radar systems,” IEEE Sensors J., v.15, n.3, p.1602, Mar 2015. DOI: https://doi.org/10.1109/JSEN.2014.2364594.

PETO, Tamas; SELLER, Rudolf. “Space-time adaptive cancellation in passive radar systems,” Int. J. Antennas Propag., v.2018, Article ID 2467673, 2018. DOI: https://doi.org/10.1155/2018/2467673.

NAVRATIL, V.; O’BRIEN, A.; GARRY, J. Landon; SMITH, G.E. “Demonstration of space-time adaptive processing for DSI suppression in a passive radar,” Proc. of 18th Int. Radar Symp., IRS, 28-30 June 2017, Prague, Czech Republic. IEEE, 2017. DOI: https://doi.org/10.23919/IRS.2017.8008146.

LUKOSHKIN, A.P.; KARPINSKII, S.S.; SHATALOV, A.A.; ET AL. Signal Processing in Multichannel Radars [in Russian, ed. by A. P. Lukoshkin]. Moscow: Radio i Svyaz’, 1983.

SAMOILENKO, V.I.; GRUBRIN, I.V. “Adaptive space-time noise filtration in multichannel systems,” Radioelectron. Commun. Syst., v.28, n.9, p.10, 1985.

SAMOILENKO, V.I.; GRUBRIN, I.V. “Joint adaptation of space and time filters in multichannel systems,” Radiotekh. Elektron., v.34, n.4, p.749, 1989.

ANDREJEV, V.G.; NGUYEN, T.P. “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst., v.58, n.2, p.85, 2015. DOI: https://doi.org/10.3103/S0735272715020053.

GANDURIN, V.A.; TROFIMOV, A.A.; CHERNYSHEV, M.I. “Structure and algorithms of space-time processing of signals in pulse-Doppler surveillance patrol radar on board aircraft,” Radiotekhnika, n.8, p.90, 2009.

TIKHONOV, R.S. “Space-time adaptive processing for forward-looking airborne radar,” Radiotekhnika, n.12, p.64, 2014. URI: http://www.radiotec.ru/article/15632#english.

TIKHONOV, R.S. “Influence of the training set non-homogeneity on space-time adaptive processing performance in airborne pulse-Dopler radar,” Trudy MAI, n.79, p.1, 2015. URI: http://trudymai.ru/eng/published.php?ID=55772.

ZHURAVLEV, A.K.; KHLEBNIKOV, V.A.; RODIMOV, A.P.; ET AL. Adaptive Radio Technical Systems with Antenna Arrays [in Russian]. Leningrad: Izd. Leningradskogo Universiteta, 1991.

LEKHOVYTSKIY, D.I.; MEZENTSEV, A.V.; TKACHENKO, V.M. “Efficiency of system of sequential radar protection against the combined interferences with introduction of frequency-shifted receiving channels,” Sb. Nauch. Tr. KhVU, n.3, p.25, 1995.

LEKHOVYTSKIY, D.I.; MEZENTSEV, A.V.; TKACHENKO, V.M. “Protection device against combined interferences,” UA Patent No. 14711, IPC G01S 7/38. 15 Jan. 1997.

ANOKHIN, V.D.; FAUZI, S.; KIL’DYUSHEVSKAYA, V.G. “Processing of radar signals against the background of combined interferences,” Radiotekhnika, n.5, p.133, 2009.

PIZA, D.M.; ZALEVSKIY, A.P. “Specificities of Adaptation of Spatial Filters in Case of Influence of Combined Interferences,” Radioelektronika. Informatika. Upravlenie, n.1, p.45, 2005.

ZALEVSKY, A.P.; PIZA, D.M.; PRESNIAK, I.S.; SIRENKO, A.S. “Coherent-pulse radar signals space-time and time-space filtering performance evaluation,” Radio Electronics, Computer Science, Control, n.2, p.39, 2012. DOI: https://doi.org/10.15588/1607-3274-2012-2-7.

RIABUKHA, V.P.; RACHKOV, D.S.; SEMENIAKA, A.V.; KATIUSHYN, Y.A. “Estimation of spatial weight vector fixation interval for sequential space-time signal processing against the background of combined interferences,” Radioelectron. Commun. Syst., v.55, n.10, p.443, 2012. DOI: https://doi.org/10.3103/S0735272712100020.

GRUBRIN, I.V.; LIGINA, I.U. “Adaptive interference filtering in the multi-channel on-board systems,” Trudy MAI, n.69, p.1, 2013. URI: http://trudymai.ru/eng/published.php/published.php?ID=43335.

GRIGOR’EV, V.A. Combined Processing of Signals in Radio Communication Systems [in Russian]. Moscow: Eko-Trends, 2002.

PIZA, D.M.; ZVIAHINTSEV, Y.A.; MOROZ, G.V. “Method of compensating the active component of combined interference in coherent pulse radar,” Radioelectron. Commun. Syst., v.59, n.6, p.251, 2016. DOI: https://doi.org/10.3103/S0735272716060030.

PIZA, D.M.; SEMENOV, D.S.; MOROZ, G.V. “Analysis of efficiency of adaptive polarizing filter under the simultaneous action of active and passive noise,” Radio Electronics, Computer Science, Control, n.3, p.20, 2017. DOI: https://doi.org/10.15588/1607-3274-2017-3-2.

PIZA, D.M.; LAVRENTIEV, V.N.; SEMENOV, D.S. “Method of forming of the classified training sample for automatic canceller of the interferences when using time-space filtering of signals,” Radio Electronics, Computer Science, Control, n.3, p.18, 2016. DOI: https://doi.org/10.15588/1607-3274-2016-3-2.

PIZA, D.M.; MOROZ, G.V. “Methods of forming classified training sample for adaptation of weight coefficient of automatic interference compensator,” Radioelectron. Commun. Syst., v.61, n.1, p.32, 2018. DOI: https://doi.org/10.3103/S0735272718010041.

PIZA, D.M.; BUGROVA, T.I.; LAVRENTIEV, V.M.; SEMENOV, D.S. “Selector of classified training samples for spatial processing of signals under the impact of combined clutter and jamming,” Radio Electronics, Computer Science, Control, n.4, p.26, 2017. DOI: https://doi.org/10.15588/1607-3274-2017-4-3.

PIZA, D.M.; ROMANENKO, S.N.; SEMENOV, D.S. “Correlation method for forming the training sample for adaptation of the spatial filter,” Radio Electronics, Computer Science, Control, n.3, p.34, 2018. DOI: https://doi.org/10.15588/1607-3274-2018-3-4.

PIZA, D.M.; BUGROVA, T.I.; LAVRENTIEV, V.N.; SEMENOV, D.S. “Method of forming classified training sample in case of spatial signal processing under influence of combined interference,” Radioelectron. Commun. Syst., v.61, n.7, p.325, 2018. DOI: https://doi.org/10.3103/S0735272718070051.

WANG, Ting; ZHAO, Yongjun; HUANG, Jie; JIN, Ke; ZHANG, Kunfan. “A reduced-rank STAP algorithm for simultaneous clutter plus jamming suppression in airborne MIMO radar,” Proc. of 18th Int. Radar Symp., IRS, 28-30 June 2017, Prague, Czech Republic. IEEE, 2017. DOI: https://doi.org/10.23919/IRS.2017.8008095.

ABRAMOVICH, Yu.I.; KACHUR, V.G. “Methods of alternate adaptive tuning of separate interference compensation systems,” J. Commun. Technol. Electron., v.32, n.10, p.124, 1987.

ABRAMOVICH, Yu.I.; KACHUR, V.G. “Speed of response of alternate adaptive tuning of separate combined interference suppression systems,” J. Commun. Technol. Electron., v.34, n.12, p.44, 1989.

BELLMAN, R. Introduction to Matrix Analysis, 2ed. Society for Industrial and Applied Mathematics, 1997. DOI: https://doi.org/10.1137/1.9781611971170.

STANIMIROVIC, I.Computation of Generalized Matrix Inverses and Applications. Waretown, NJ: Apple Academic Press, 2017.

SKOLNIK, M. Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008.

JENKINS, Gwilym M.; WATTS, Donald G. Spectral Analysis and Its Applications. San Francisco: Holden-Day, 1968.

LEKHOVYTSKIY, D.I.; KIRILLOV, I.G. “Simulation of clutter by using pulse radar on the basis of processes of autoregression of an arbitrary order,” Syst. Obrob. Inf., n.3, p.90, 2008.

GILL, P.E.; MURRAY, W. (eds.), Numerical Methods for Constrained Optimization. Academic Press: London, 1974.

RICE, J.R. Matrix Calculations and Mathematical Software. McGraw-Hill, 1981.

VOEVODIN, V.V.; TYRTYSHNIKOV, E.E. Computational Processes with Toeplitz Matrices [in Russian]. Moscow: Nauka, 1987.

LEKHOVYTSKIY, D.I. “Generalized Levinson algorithm and universal lattice filters,” Radiophys. Quantum Electron., v.35, n.9-10, p.509, 1992. DOI: http://doi.org/10.1007/BF01044971.

BURG, J.P. “A new analysis technique for time series data,” NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics.Netherlands, 12-23 Aug. 1968.

ITAKURA, F.; SAITO, S. “Digital filtering techniques for speech analysis and synthesis,” Proc. of 7th Int. Congress Acoust., 1971, Budapest, Hungary. Budapest, Paper 25 C-I. 1971, p.261-264.

FRIEDLANDER, B. “Lattice filters for adaptive processing,” Proc. IEEE, v.70, n.8, p.829, 1982. DOI: https://doi.org/10.1109/PROC.1982.12407.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; RIABUKHA, V.P.; ATAMANSKIY, D.V. “Adaptive lattice filters. PartI.Theory of lattice structures,” Prikladnaya Radioelektronika, v.10, n.4, p.380, 2011.

LEKHOVYTSKIY, D.I.; ABRAMOVICH, Y.I. “Adaptive lattice filters for band-inverse (TVAR) covariance matrix approximations: theory and practical applications,” in: Proc. of 2009 Int. Radar Symp., IRS 2009, Hamburg, Germany. Hamburg: TUHH, 2009, p.535-539.

YANG, W.-H.; HOLAN, S.H.; WIKLE, C.K. “Bayesian lattice filters for time-varying autoregression and time-frequency analysis,” Bayesian Analysis, v.11, n.4, p.977, 2016. DOI: http://doi.org/10.1214/15-BA978.

OZDEN, M.T. “Sequential convex combinations of multiple adaptive lattice filters in cognitive radio channel identification,” EURASIP J. Adv. Signal Process., 2018:45, 25 (2018). DOI: https://doi.org/10.1186/s13634-018-0567-3.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V. “K-rank modification of adaptive lattice filter parameters,” Proc. of 2015 IEEE Radar Conf., RadarCon, 10-15 May 2015, Arlington, USA. IEEE, 2015. DOI: https://doi.org/10.1109/RADAR.2015.7130983.

LEV-ARI, H.; KAILATH, T. “Schur and Levinson algorithms for nonstationary processes,” Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’81, 30 Mar.-1 Apr. 1981, Atlanta, USA. IEEE, 1981. DOI: https://doi.org/10.1109/ICASSP.1981.1171194.

SHARMAN, K.C.; DURRANI, T.S. “Spatial lattice filter for high-resolution spectral analysis of array data,” IEE Proc. F - Commun., Radar and Signal Process., v.130, n.3, p.279, 1983. DOI: https://doi.org/10.1049/ip-f-1.1983.0047.

BEYER, H.-G.; SENDHOFF, B. “Simplify your covariance matrix adaptation evolution strategy,” IEEE Trans. Evol. Comput., v.21, n.5, p.746, 2017. DOI: https://doi.org/10.1109/TEVC.2017.2680320.

DE MAIO, A.; ORLANDO, D. “An invariant approach to adaptive radar detection under covariance persymmetry,” IEEE Trans. Signal Process., v.63, n.5, p.1297, 2015. DOI: https://doi.org/10.1109/TSP.2014.2388441.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; ATAMANSKIY, D.V.; RIABUKHA, V.P. “Quasioptimal algorithms for batch coherent signals interperiod processing against background clutter,” Proc. of Int. Radar Symp., IRS-2014, 16-18 June 2014, Gdansk, Poland. IEEE, 2014, p.25-30. DOI: https://doi.org/10.1109/IRS.2014.6869195.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RIABUKHA, V.P.; RACHKOV, D.S.; SEMENIAKA, A.V. “Combining target detection against the background of jamming signals and jamming signal DOA estimation,” Proc. of X Int. Conf. on Antenna Theory and Techniques, ICATT’2015, 21-24 Apr. 2015, Kharkiv, Ukraine. IEEE, 2015, p.36-40. DOI: https://doi.org/10.1109/ICATT.2015.7136777.

Published

2019-07-24

Issue

Section

Research Articles