Solution of reduced equations of injection-locked oscillator
DOI:
https://doi.org/10.3103/S0735272719060037Keywords:
injection-locked oscillator, operation peculiarities, nonlinear analysis, method of linear approximation, small parameter methodAbstract
Oscillators with the primary tone synchronization and based on the frequency-divider mode have been considered in this study. The paper proposes a generalized model of injection-locked oscillator using the linear polynomial approximation of nonlinear characteristic of its amplifying element, and a new analysis technique based on peculiarities of the oscillator operation in injection-locked mode. These peculiarities imply that the oscillation amplitude can be considered as steady-state at an arbitrary instantaneous value of phase shift and that the curvature of phase characteristic of the oscillator decreases with the rise of synchronization signal amplitude within certain limits. The development of the new technique involved the use of the linear approximation method of reduced equations of injection-locked oscillator and the small parameter method. The new technique is insensitive to the form of nonlinear terms, and it allows us to obtain analytical solutions of reduced equations having different nonlinear terms that depend on the oscillator operation mode. This technique features small errors and essentially simplifies the investigation of injection-locked oscillators and their systems. The experimental test confirmed its high efficiency.References
BARRON, Miguel Angel. “Stability of a ring of coupled van der Pol oscillators with non-uniform distribution of the coupling parameter,” J. Appl. Res. Technol., v.14, n.1, p.62, 2016. DOI: https://doi.org/10.1016/j.jart.2016.01.002.
HU, K.; CHUNG, K.-w. “On the stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings,” AIP Advances, v.3, n.11, 112118, 2013. DOI: https://doi.org/10.1063/1.4834115.
IGNATOV, M.; HANSEN, M.; ZIEGLER, M.; KOHLSTEDT, H. “Synchronization of two memristively coupled van der Pol oscillators,” AIP Appl. Phys. Lett., v.108, n.8, 084105, 2016. DOI: https://doi.org/10.1063/1.4942832.
SEETHARAM, V.; PEARSON, Wilson L. “Analysis of strong coupling in coupled oscillator arrays,” IEEE Trans. Antennas Propag., v.58, n.4, p.1067, 2010. DOI: https://doi.org/10.1109/TAP.2010.2041141.
CORDEAU, David; MELLOULI, Dorra; PAILLOT, Jean-Marie; MNIF, Hassene; LOULOU, Mourad. “A fully monolithic 5.8 GHz low phase noise coupled VCO network for phase-array systems,” Analog Integrated Circuits Signal Processing, v.82, n.1, p.335, 2015. DOI: https://doi.org/10.1007/s10470-014-0437-3.
LO, Yu-Tsung; KIANG, Jean-Fu. “Comparison of injection-locked and coupled oscillator arrays for beamforming,” IEEE Trans. Microwave Theory Tech., v.63, n.4, p.1353, 2015. DOI: https://doi.org/10.1109/TMTT.2015.2403847.
SENGUPTA, Kaushik; HAJIMIRI, Ali. “Mutual synchronization for power generation and beam-steering in CMOS with on-chip sense antennas near 200 GHz,” IEEE Trans. Microwave Theory Tech., v.63, n.9, p.2867, 2015. DOI: https://doi.org/10.1109/TMTT.2015.2457902.
DAWN, S.K.; CHATTOPADHYAY, Taraprasad. “An active, tracking microwave notch filter using a pair of Gunn oscillators,” Int. J. Microwave Engineering, v.1, n.3, p.11, 2016. DOI: https://doi.org/10.5121/jmicro.2016.1302.
DAWN, Santosh Kumar; CHATTOPADHYAY, Taraprasad. “Unilaterally injection-locked Gunn oscillator pair acting as a microwave active notch filter,” Int. J. Electronics Commun. Eng., v.7, n.2, p.25, 2016. URI: http://www.iaeme.com/MasterAdmin/UploadFolder/IJECET_07_02_004/IJECET_07_02_004.pdf.
BHATTACHARYYA, P.; DAWN, S.K.; CHATTOPADHYAY, T. “A low-noise band pass filter using an X-band injection-locked Gunn oscillator,” IJRET, v.5, n.1, p.27, 2016. DOI: http://doi.org/10.15623/ijret.2016.0501005.
DAWN, Santosh K.; CHATTOPADHYAY, Taraprasad. “A tracking microwave wideband reject filter using antiphase locking,” Int. J. Electron. Lett., v.6, n.2, p.146, 2018. DOI: https://doi.org/10.1080/21681724.2017.1329943.
NOSKOV, Vladislav Ya.; VASILEV, Aleksandr S.; ERMAK, Gennadiy P.; IGNATKOV, Kirill A.; CHUPAKHIN, Andrey P. “Fluctuation characteristics of autodyne radars with frequency modulation,” Radioelectron. Commun. Syst., v.60, n.3, p.123, 2017. DOI: https://doi.org/10.3103/S0735272717030049.
MIRZAEI, A.; HEIDARI, Mohammad E.; BAGHERI, Rahim; CHEHRAZI, Saeed; ABIDI, Asad A. “The quadrature LC oscillator: A complete portrait based on injection locking,” IEEE J. Solid-State Circuits, v.42, n.9, p.1916, 2007. DOI: https://doi.org/10.1109/JSSC.2007.903047.
BUONOMO, Antonio; LO SCHIAVO, Alessandro. “Analytical approach to the study of injection-locked frequency dividers,” IEEE Trans. Circuits Syst. I: Regular Papers, v.60, n.1, p.51, 2013. DOI: https://doi.org/10.1109/TCSI.2012.2215716.
PONTON, Mabel; SUÁREZ, Almudena. “Wireless injection locking of oscillator circuits,” IEEE Trans. Microwave Theory Tech., v.64, n.12, p.4646, 2016. DOI: https://doi.org/10.1109/TMTT.2016.2623622.
RAPIN, V. “Synchronized oscillators with the phase-negative feedback,” IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., v.49, n.8, p.1242, 2002. DOI: https://doi.org/10.1109/TCSI.2002.800615.