EHF band linear antenna array based on surface wave transformation

Authors

DOI:

https://doi.org/10.3103/S073527271903004X

Keywords:

antenna array, H-shaped metal-dielectric waveguide, near-field distribution, radiation pattern

Abstract

The experience of using of experimental samples of diffraction radiation antennas shows the need to expand the list of options and modifications of the technical solutions for such antennas. One of variants is the modification of a linear dielectric waveguide for rigidly fixation of the dielectric rod. H-shaped surface-wave waveguides in the form of combination of dielectric rod and rigid metal elements have been proposed for a basic element of diffraction radiation antennas designed for operation in conditions of increased mechanical loads and vibrations at frequencies above 80 GHz. The results of experimental studies of the near-field distribution, radiation patterns, gain and energy losses of the antenna are presented. The obtained results show the effectiveness of the implemented constructive approach. The configuration of the linear antenna grating of diffraction radiation with a modified dielectric waveguide is proposed, which can be applied for the development of scanning antennas in the 80–100 GHz frequency range.

References

VOSKRESENSKII, D.I. (ed.), Microwave Antennas and Devices [in Russian]. Moscow: Radio i Svyaz’, 1981.

ANDRENKO, S.D.; SIDORENKO, Yu.B.; SHESTOPALOV, V.P. “On the issue of the surface wave-to-spatial mode transformation,” DAN USSR, n.12, p.156, 1976.

ANDRENKO, S.D.; DEVYATKOV, N.D.; SHESTOPALOV, V.P. “Millimeter band arrays,” DAN SSSR, v.240, n.6, p.1340, 1978.

SAUTBEKOV, S.; SIRENKO, K.; SIRENKO, Yu.; YEVDOKYMOV, A. “Diffraction radiation effects: a theoretical and experimental study,” IEEE Antennas Propag. Mag., v.57, n.5, p.73, 2015. DOI: https://doi.org/10.1109/MAP.2015.2470673.

KUSAYKIN, O.P.; MELEZHIK, P.N.; POYEDINCHUK, A.E.; PROVALOV, S.A.; SELEZNYOV, D.G. “Surface and leaky waves of a planar dielectric waveguide with a diffraction grating,” IET Microwaves, Antennas & Propag., v.10, n.1, p.61, 2016. DOI: https://doi.org/10.1049/iet-map.2015.0158.

KIRILENKO, A.A.; STESHENKO, S.O. “The accurate two-dimensional model of the effect of the surface waves transformation into the spatial modes,” Telecom. Radio Eng., v.65, n.16-20, p.1765, 2006. DOI: http://doi.org/10.1615/TelecomRadEng.v65.i19.30.

OSTANKOV, A.V.; ANTIPOV, S.A.; RAZINKIN, K.A. “Optimization of directional and energetic properties of diffraction antenna,” Global J. Pure Appl. Math., v.12, n.4, p.3845-3864, 2016. URI: https://www.ripublication.com/gjpam16/gjpamv12n4_86.pdf.

MELEZHIK, P.N.; RAZSKAZOVSKIY, V.B.; REZNICHENKO, N.G.; ZUYKOV, V.A.; ANDRENKO, S.D.; SIDORENKO, Yu.V.; PROVALOV, S.A.; VARAVIN, A.V.; USOV, L.S.; CHMIL, V.M.; MUS’KIN, Yu.N. “Semiconductor coherent Ka-band radar for airport surface traffic monitoring,” Nauka Innov., v.4, n.3, p.5, 2008. DOI: https://doi.org/10.15407/scin4.03.005.

MELEZHIK, P.N.; SIDORENKO, Yu.B.; PROVALOV, S.A.; ANDRENKO, S.D.; SHILO, S.A. “Planar antenna with diffraction radiation for radar complex of millimeter band,” Radioelectron. Commun. Syst., v.53, n.5, p.233, 2010. DOI: https://doi.org/10.3103/S073527271005002X.

HNATOVSKYI, A.V.; PROVALOV, S.A. “Properties of combined gratings in diffraction radiation antennas,” Telecom. Radio Eng., v.74, n.3, p.189, 2015. DOI: http://doi.org/10.1615/TelecomRadEng.v74.i3.10.

VERTIY, A.A.; SIRENKO, Yu.K.; PAVLYUCHENKO, A.; POYEDINCHUK, A.; SABYROV, A.; SAUTBEKOV, S.S.; YASHINA, N.P. “Surface-to-spatial mode conversion by a convex cylindrical diffraction grating: an experimental study,” Telecom. Radio Eng., v.75, n.4, p.297, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i4.20.

BURAMBAYEVA, N.; NAUMENKO, V.; SAUTBEKOV, S.S.; SIRENKO, Yu.K.; VERTIY, A.A. “Modeling and analysis of a fast-scanning diffraction radiation antenna,” Telecom. Radio Eng., v.75, n.3, p.189, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i3.10.

COHN, M. “Propagation in a dielectric-loaded parallel plane waveguide,” IRE Trans. Microwave Theory Tech., v.7, n.2, p.202, 1959. DOI: https://doi.org/10.1109/TMTT.1959.1124682.

SANCHEZ, A.; OLINER, A.A. “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide - Part I: Accurate theory,” IEEE Trans. Microwave Theory Tech., v.35, n.8, p.737, 1987. DOI: https://doi.org/10.1109/TMTT.1987.1133740.

QING, H.; OLINER, A.A.; SANCHEZ, A. “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide - Part II: Comparison with experiments,” IEEE Trans. Microwave Theory Tech., v.35, n.8, p.748, 1987. DOI: https://doi.org/10.1109/TMTT.1987.1133741.

ATTARI, J.; BOUTAYEB, H.; WU, K. “A simplified implementation of substrate integrated non-radiative dielectric waveguide at millimeter-wave frequencies,” PIER C, v.55, p.83, 2014. DOI: http://doi.org/10.2528/PIERC14051905.

LATRACH, L.; RIHEM, N.; HANEN, H.; GHARSALLAH, A. “Parametric and comparative studies of leaky wave image NRDG antenna designed with the ordinary single-layer and the double-layers rectangular image NRD guide,” Int. J. Commun. Antenna Propag., v.6, n.2, p.108, 2016. DOI: https://doi.org/10.15866/irecap.v6i2.8325.

GUTTSAIT, E.M. “Mode types in the H-shaped metal-dielectric waveguide,” Radiotekh. Elektron., n.2, p.310, 1962.

SHESTOPALOV, V.P.; LITVINENKO, L.N.; MASALOV, S.A.; SOLOGUB, V.G. Wave Diffraction on Grating Arrays [in Russian]. Kharkov: Izdat. Kharkiv University, 1973.

Published

2019-03-24

Issue

Section

Research Articles