ECG signal characterization using Lagrange-Chebyshev polynomials

Authors

DOI:

https://doi.org/10.3103/S0735272719020031

Keywords:

ECG signal, Bottom Up algorithm, Chebyshev nodes, Lagrange-Chebyshev interpolation, percentage mean square sifference, signal-to-noise ratio

Abstract

An ECG (electrocardiogram) is a signal representing a combination of potentials that reflect the electrical activity of the heart. These signals are often corrupted by artifacts of high magnitude and frequency during acquisition, storage and transmission. Addition of these artifacts may change the morphology of the ECG signals and can hinder accurate interpretations; hence proper characterization is required for better clinical evaluation. In this paper ECG signals from MIT-BIH database are characterized using polynomial interpolation method. In this method, initially Chebyshev nodes are suitably chosen in the desired ECG interval and then these nodes are utilized by Lagrange interpolation method for restoration of ECG signals. The results of the interpolation are further improved by segmenting the ECG signals into suitable number of segments using Bottom-Up time series segmentation approach. The performance of the proposed method is analyzed in terms of standard ECG performance parameters: mean absolute deviation, root mean square deviation, percentage root mean square difference error, signal to noise ratio and cross correlation. Results obtained are compared with existing methods and are found to be superior and diagnostically acceptable. Practical implementation areas of the proposed method are also explored.

References

EBRAHIMZADEH, E.; POOYAN, M.; JAHANI, S.; BIJAR, A.; SETAREDAN, S.K. “ECG signals noise removal: Selection and optimization of the best adaptive filtering algorithm based on various algorithms comparison,” Biomedical Engineering: Applications, Basis Commun., v.27, n.4, p.1550038, 2015. DOI: https://doi.org/10.4015/S1016237215500386.

JHA, C.K.; KOLEKAR, M.H. “ECG data compression algorithm for tele-monitoring of cardiac patients,” Int. J. Telemedicine and Clinical Practices, v.2, n.1, p.31, 2017. DOI: http://doi.org/10.1504/IJTMCP.2017.082106.

BHOGESHWAR, S.S.; SONI, M.K.; BANSAL, D. “Design of simulink model to denoise ECG signal using various IIR & FIR filters,” Proc. of Int. Conf. on Reliability Optimization and Information Technology, ICROIT, 6-8 Feb. 2014, Faridabad, India. IEEE, 2014, p.477-483. DOI: https://doi.org/10.1109/ICROIT.2014.6798370.

GAIKWAD, K.M.; CHAVAN, M.S. “Removal of high frequency noise from ECG signal using digital IIR butterworth filter,” Proc. of IEEE Global Conf. on Wireless Computing and Networking, GCWCN, 22-24 Dec. 2014, Lonavala, India. IEEE, 2014, p.121-124. DOI: https://doi.org/10.1109/GCWCN.2014.7030861.

SHARMA, I.; MEHRA, R.; SINGH, M. “Adaptive filter design for ECG noise reduction using LMS algorithm,” Proc. of 4th Int. Conf. on Reliability, Infocom Technologies and Optimization, 2-4 Sept. 2015, Noida, India. IEEE, 2015, p.1-6. DOI: https://doi.org/10.1109/ICRITO.2015.7359333.

BISWAS, U.; DAS, A.; DEBNATH, S.; OISHEE, I. “ECG signal denoising by using least-mean-square and normalised-least-mean-square algorithm based adaptive filter,” Proc. of 2014 Int. Conf. on Informatics, Electronics & Vision, ICIEV, 23-24 May 2014, Dhaka, Bangladesh. IEEE, 2014, p.1-6. DOI: https://doi.org/10.1109/ICIEV.2014.6850857.

JAVED, S.; AHMAD, N.A. “An adaptive noise cancelation model for removal of noise from modeled ECG signals,” Proc. of IEEE Region 10 Symp., 14-16 Apr. 2014, Kuala Lumpur, Malaysia. IEEE, 2014, p.471-475. DOI: https://doi.org/10.1109/TENCONSpring.2014.6863079.

WANG, J.S.; ZHANG, Y.; ZHANG, P.; SUN, S.-F. “Research on denoising algorithm for ECG signals,” Proc. of 29th Chinese Control Conf., 29-31 Jul. 2010, Beijing, China. IEEE, 2010, p.2936-2940. URI: https://ieeexplore.ieee.org/document/5574064.

PENG, Z.; WANG, G. “Study on optimal selection of wavelet vanishing moments for ECG denoising,” Sci. Rep., v.7, n.1, p.4564, 2017. DOI: http://doi.org/10.1038/s41598-017-04837-9.

ALLAMI, R.; STRANIERI, A.; BALASUBRAMANIAN, V.; JELINEK, H.F. “A genetic algorithm-neural network wrapper approach for bundle branch block detection,” Proc. of Computing in Cardiology Conf., CinC, 11-14 Sept. 2016, Vancouver, Canada. IEEE, 2016, p.461-464. DOI: https://doi.org/10.23919/CIC.2016.7868779.

PASOLLI, E.; MELGANI, F. “Genetic algorithm-based method for mitigating label noise issue in ECG signal classification,” Biomedical Signal Processing and Control, v.19, p.130, 2015. DOI: https://doi.org/10.1016/j.bspc.2014.10.013.

KUMAR, S.S.; MOHAN, N.; PRABAHARAN, P.; SOMAN, K.P. “Total variation denoising based approach for R-peak detection in ECG signals,” Procedia Computer Sci., v.93, p.697, 2016. DOI: https://doi.org/10.1016/j.procs.2016.07.268.

YADAV, O.P.; RAY, S. “Piecewise modeling of ECG signals using Chebyshev polynomials,” in: BEHERA, H.S.; NAYAK, J.; NAIK, B.; ABRAHAM, A. (eds.) Computational Intelligence in Data Mining. Advances in Intelligent Systems and Computing. Singapore: Springer, 2019, v.711, p.287-296. DOI: https://doi.org/10.1007/978-981-10-8055-5_26.

SZEGÖ, G. Orthogonal Polynomials. Vol. 23, 4th ed. Rhode Island: AMS, 1939, 1975.

BJÖRCK, A.; PEREYRA, V. “Solution of vandermonde systems of equations,” Mathematics Computation, v.24, n.112, p.893, 1970. URI: https://www.ams.org/journals/mcom/1970-24-112/S0025-5718-1970-0290541-1/S0025-5718-1970-0290541-1.pdf.

CAPORALE, G.M.; CERRATO, M. “Chebyshev polynomial approximation to approximate partial differential equations,” Working Papers 2008_16, Business School - Economics. University of Glasgow, 2008. URI: https://ideas.repec.org/p/gla/glaewp/2008_16.html.

DE VILLIERS, J. Mathematics of Approximation, Vol. 1. Springer Science & Business Media, 2012. DOI: http://doi.org/10.2991/978-94-91216-50-3.

LEVY, D. Introduction to Numerical Analysis. Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, CSCAMM. University of Maryland, 2010.

POWELL, M.J. “On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria,” The Computer J., v.9, n.4, p.404, 1967. DOI: https://doi.org/10.1093/comjnl/9.4.404.

BRISEBARRE, N.; JOLDEŞ, M. “Chebyshev interpolation polynomial-based tools for rigorous computing,” Proc. of 2010 Int. Symp. on Symbolic and Algebraic Computation. ACM, 2010, p.147-154.

GOLDBERGER, A.L.; AMARAL, L.A.; GLASS, L.; HAUSDORFF, J.M.; IVANOV, P.C.; MARK, R.G.; MIETUS, J.E.; MOODY, G.B.; PENG, C.K.; STANLEY, H.E. “PhysioBank, physioToolkit, and physioNet: components of a new research resource for complex physiologic signals,” Circulation, v.101, n.23, p.215, 2000. PMID: 10851218.

SANDRYHAILA, A.; SABA, S.; PUSCHEL, M.; KOVACEVIC, J. “Efficient compression of QRS complexes using Hermite expansion,” IEEE Trans. Signal Processing, v.60, n.2, p.947, 2012. DOI: https://doi.org/10.1109/TSP.2011.2173336.

OUALI, M.A.; GHANAI, M.; CHAFAA, K. “Upper envelope detection of ECG signals for baseline wander correction: a pilot study,” Turkish J. Electrical Engineering & Computer Sciences, v.26, n.2, p.803, 2018. DOI: http://doi.org/10.3906/elk-1705-165.

JOKIC, S.; DELIC, V.; PERIC, Z.; KRCO, S.; SAKAC, D. “Efficient ECG modeling using polynomial functions,” Elektronika ir Elektrotechnika, v.110, n.4, p.121, 2011. DOI: http://dx.doi.org/10.5755/j01.eee.110.4.304.

XAVIER, B.; DAHIKAR, P.B. “Iterative least square polynomial approximation method for filtering ECG signals,” European J. Advances in Engineering and Technology, v.3, n.7, p.65, 2016. URI: http://www.ejaet.com/PDF/3-7/EJAET-3-7-65-70.pdf.

NAHIYAN, K.T.; AL AMIN, A. “Removal of ECG baseline wander using Savitzky-Golay filter based method,” Bangladesh J. Medical Physics, v.8, n.1, 2015. DOI: https://doi.org/10.3329/bjmp.v8i1.33932.

KWAN, B.-H.; ONG, K.-M.; PARAMESRAN, R. “Noise removal of ECG signals using Legendre moments,” Proc. of IEEE 27th Annual Int. Conf. on Engineering in Medicine and Biology Society, 17-18 Jan 2006, Shanghai, China. IEEE, 2006, p.5627-5630. DOI: https://doi.org/10.1109/IEMBS.2005.1615762.

CASTIGLIONI, P.; PICCINI, L.; DI RIENZO, M. “Interpolation technique for extracting features from ECG signals sampled at low sampling rates,” Proc. of Conf. on Computers in Cardiology, 21-24 Sept. 2003, Thessaloniki Chalkidiki, Greece. IEEE, 2003, p.481-484. DOI: https://doi.org/10.1109/CIC.2003.1291197.

GACEK, A.; PEDRYCZ, W. ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence. Springer Science & Business Media, 2012. DOI: http://doi.org/10.1007/978-0-85729-868-3.

YADAV, O.P.; RAY, S. “Smoothening and segmentation of ECG signals using total variation denoising-minimization-majorization and bottom-up approach,” Procedia Computer Science, v.85, p.483, 2016. DOI: https://doi.org/10.1016/j.procs.2016.05.195.

RAY, S.; YADAV, O.P. “Approximation of ECG signals using Chebyshev polynomials,” Proc. of 7th Int. Workshop on Reliable Engineering Computing with Polymorphic Uncertain Data, 2016, Ruhr University Bochum, Germany, v.15, p.335-348, 2016.

BURNS, A.; GREENE, B.R.; MCGRATH, M.J.; O’SHEA, T.J.; KURIS, B.; AYER, S.M.; STROIESCU, F.; CIONCA, V. “Shimmer - a wireless sensor platform for noninvasive biomedical research,” IEEE Sensors J., v.10, n.9, p.1527, 2010. DOI: https://doi.org/10.1109/JSEN.2010.2045498.

ALHELAL, D.; ABOALAYON, K.A.I.; DANESHZAND, M.; FAEZIPOUR, M. “FPGA-based denoising and beat detection of the ECG signal,” Proc. of 2015 IEEE Long Island Systems, Applications and Technology Conf., LISAT, 1 May 2015, Farmingdale, USA. IEEE, 2015, p.1-5. DOI: https://doi.org/10.1109/LISAT.2015.7160184.

ANAPAGAMINI, S.; RAJAVEL, R. “Hardware implementation of ECG denoising system using TMS320C6713 DSP processor,” Int. J. Biomedical Engineering Technology, v.21, n.1, p.95, 2016. DOI: https://doi.org/10.1504/IJBET.2016.076735.

ROMERO, V.B.; ATIENZA, D.; KHALED, N. “ECG baseline wander removal and noise suppression analysis in an embedded platform,” Proyecto Fin de Master en Ingenierıa de Computadores, Master en Investigacion en Informatica, Facultad de Informatica, Universidad Complutense de Madrid. Madrid, 2009. URI: https://core.ac.uk/download/pdf/19712998.pdf.

Published

2019-03-26

Issue

Section

Research Articles