Adaptive filtration of radio source movement parameters based on sensor network TDOA measurements in presence of anomalous measurements

Authors

DOI:

https://doi.org/10.3103/S073527271902002X

Keywords:

quasioptimal algorithm, adaptive filtration, TDOA, time difference of arrival, measurements, sensor network, anomalous errors

Abstract

The methods based on TDOA measurements find wide application for localization of radio sources using wireless sensor networks. The need of taking into account the presence of anomalous measurement results often occurs in real conditions. Their appearance means a significant malfunction of sensor network components that results in divergence of traditional algorithms of Kalman filtration of radio source movement parameters. Based on the mathematical tools of mixed Markov processes in discrete time domain, the optimal and quasioptimal algorithms of adaptive filtration of radio source movement parameters were synthesized on the basis of TDOA measurements of sensor network in the presence of anomalous measurements. The optimal algorithm describes the evolution of joint a posteriori probability density of the vector of movement parameters and switching variables determining the type of measurement errors of network sensors. The quasioptimal algorithm obtained by linearization of the measurement equation involves the implementation of sequential technique of incoming data processing and performance of the Gaussian approximation of a posteriori probability density of radio source movement parameters. For the case considered in this paper using the statistical simulation, the developed quasioptimal algorithm makes it possible to recognize the appearance of anomalous errors of measurements with probability close to unity and eliminate their impact on the accuracy of determining the radio source movement parameters.

References

EMERY, M.; DENKO, M. “IEEE 802.11 WLAN based real-time location tracking in indoor and outdoor environments,” Proc. of Canadian Conf. on Electrical and Computer Engineering, CCECE’07, 22-26 Apr. 2007, Vancouver, Canada. IEEE, 2007, p.1062-1065. DOI: https://doi.org/10.1109/CCECE.2007.271.

XU, E.; DING, Z.; DASGUPTA, S. “Target tracking and mobile sensor navigation in wireless sensor networks,” IEEE Trans. Mobile Comput., v.12, n.1, p.177, Jan. 2013. DOI: https://doi.org/10.1109/TMC.2011.262.

SINCLAIR, A.J.; LOVELL, T.A.; DARLING, J. “RF localization solution using heterogeneous TDOA,” IEEE Aerospace Conf., 7-14 Mar. 2015, Big Sky, USA. IEEE, 2015. DOI: https://doi.org/10.1109/AERO.2015.7119256.

MAHFOUZ, S.; MOURAD-CHEHADE, F.; HONEINE, P.; FARAH, J.; SNOUSSI, H. “Target tracking using machine learning and Kalman filter in wireless sensor networks,” IEEE Sensors J., v.14, n.10, p.3715, Oct. 2014. DOI: https://doi.org/10.1109/JSEN.2014.2332098.

LIU, F.; LI, H.; YANG, Z. “Estimation method based on deep neural network for consecutively missing sensor data,” Radioelectron. Commun. Syst., v.61, n.6, p.258, 2018. DOI: https://doi.org/10.3103/S0735272718060043.

ALSHEIKH, Mohammad Abu; LIN, Shaowei; NIYATO, Dusit; TAN, Hwee-Pink. “Machine learning in wireless sensor networks: Algorithms strategies and applications,” IEEE Commun. Surveys & Tutorials, v.16, n.4, p.1996, 2014. DOI: https://doi.org/10.1109/COMST.2014.2320099.

AMAR, Alon; LEUS, Geert. “A reference-free time difference of arrival source localization using a passive sensor array,” IEEE Sensor Array and Multichannel Signal Processing Workshop, 4-7 Oct. 2010, Jerusalem, Israel. IEEE, 2010, p.157-160. DOI: http://dx.doi.org/10.1109/SAM.2010.5606725.

ZHANG, X.; HUANG, J.; WANG, Y.; ZHOU, Y. “An efficient estimator for target localization in a multistation redundancy system without matrix inversion,” J. Sensors, v.2018, p.1, 2018. DOI: https://doi.org/10.1155/2018/6362939.

RULLAN-LARA, Jose L.; SANAHUJA, Guillaume; LOZANO, Rogelio; SALAZA, Sergio; GARCIA-HERNANDEZ, Ramon; RUZ-HERNANDEZ, Jose A. “Indoor localization of a quadrotor based on WSN: a real-time application,” Int. J. Advanced Robotic Systems, v.10, n.1, 2013. DOI: https://doi.org/10.5772/53748.

EL GEMAYEL, N.; KOSLOWSKI, S.; JONDRAL, F.K.; TSCHAN, J. “A low cost TDOA localization system: Setup, challenges and results,” Proc. of 10th Workshop on Positioning, Navigation and Communication, WPNC, 20-21 Mar. 2013, Dresden Germany. IEEE, 2013, p.1-4. DOI: https://doi.org/10.1109/WPNC.2013.6533293.

EL GEMAYEL, Noha; JAKEL, Holger; JONDRAL, Friedrich K. “Error analysis of a low cost TDoA sensor network,” Proc. of IEEE/ION Position, Location and Navigation Symp., 5-8 May 2014, Monterey, USA. IEEE, 2014, p.1140-1145. DOI: http://dx.doi.org/10.1109/PLANS.2014.6851484.

WAN, Pengwu; LI, Zan; HAO, Benjian. “Time delay estimation of co-frequency signals in TDOA localization based on WSN,” Proc. of Int. Conf. on Computer, Information and Telecommunication Systems, CITS, 6-8 Jul. 2016, Kunming, China. IEEE, 2016. DOI: http://dx.doi.org/10.1109/CITS.2016.7546399.

MAKKI, Ahmed; SIDDIG, Abubakr; SAAD, Mohamed; CAVALLARO, Joseph R.; BLEAKLEY, Chris J. “Indoor localization using 802.11 time differences of arrival,” IEEE Trans. Instrumentation Meas., v.65, n.3, p.614, Mar. 2016. DOI: https://doi.org/10.1109/TIM.2015.2506239.

KUPRIYANOV, A.I.; SAKHAROV, A.V. Theoretical Foundations of Electronic Warfare: Training Manual [in Russian]. Moscow: Vuzovskaya Kniga, 2007.

SIROTA, A.A.; KIRSANOV, E.A. “The neural-network and statistical algorithms for estimating coordinates of a source of radio radiation in multi-position radio systems in the presence of abnormal errors of primary parameter measurement,” Radioelectron. Commun. Syst., v.49, n.4, p.13, 2006. URI: http://radioelektronika.org/article/view/S0735272706040030.

YOU, He; JIANJUAN, Xiu; XIN, Guan. Radar Data Processing with Applications. Wiley, 2016. DOI: https://doi.org/10.1002/9781118956878.

TOVKACH, I.O.; ZHUK, S.Ya. “Recurrent algorithm for TDOA localization in sensor networks,” J. Aerosp. Technol. Manag., v.9, n.4, p.489, 2017. DOI: http://dx.doi.org/10.5028/jatm.v9i4.727.

EVLANOV, P.A.; ZHUK, S.Ya. “Integration of meters with failures,” Radioelectron. Commun. Syst., v.33, n.7, p.49, 1990. URI: http://radioelektronika.org/article/view/S073527271990070111.

TIKHONOV, V.I.; KHARISOV, V.N. Statistical Analysis and Synthesis of Radiotechnical Devices and Systems [in Russian], 3rd ed. Moscow: Goryachaya Liniya–Telekom, 2014.

TRIFONOV, A.P.; SHINAKOV, Yu.S. Joint Distinction of Signals and Estimation of their Parameters against the Background of Interferences [in Russian]. Moscow: Media, 2012.

ZHUK, S.Ya. “Synthesis of digital detector-meters for mixed Markovian processes,” Radioelectron. Commun. Syst., v.32, n.11, p.29, 1989. URI: http://radioelektronika.org/article/view/S073527271989110063.

TOVKACH, I.O.; ZHUK, S.Ya. “Adaptive filtration of radio source movement parameters with complex use of sensor network data based on TDOA and RSS methods,” Radioelectron. Commun. Syst., v.60, n.12, p.528, 2017. DOI: https://doi.org/10.3103/S0735272717120020.

Published

2019-02-26

Issue

Section

Research Articles