Spatial-harmonic magnetrons with cold secondary-emission cathode: State-of-the-art (review)
DOI:
https://doi.org/10.3103/S0735272718070014Keywords:
magnetron, millimeter-wavelength oscillator, cold cathode, secondary-emission cathode, vacuum tubeAbstract
Spatial-harmonic magnetrons with cold secondary-emission cathode are efficient high-power sources throughout the millimeter wavelength band. In this paper, resent advances in design, modeling, and fabrication of such magnetrons are described. Low-voltage magnetrons, sub-THz tubes, and magnetrons with metamaterial anode structure are described to illustrate these advances. The issue of the lifetime of the magnetrons with a cold secondary-emission cathode is also addressed. The main problems related with the usage of an auxiliary cathode in such tubes are considered and alternative solutions are discussed. Potentials for further improving the performance of spatial-harmonic magnetrons are analyzed as well.References
ROBERTSHAW, R.D.; WILLSHAW, W.E. Proc. IEE, Monograph, n.168R, p.103, Pt. B, 1956.
VIGDORCHIK, I.M.; NAUMENKO, V.D.; TIMOFEEV, V.P. “The secondary-emission cold cathode pulse magnetrons of the millimeter wavelength,” DAN USSR, Ser. A, n.7, p.633, 1975.
NAUMENKO, V.D.; SUVOROV, A.N.; SIROV, A. “Tunable magnetron of a two-millimeter-wavelength band,” Microw. Opt. Technol. Lett., v.12, n.3, p.129-131, 1996. DOI: https://doi.org/10.1002/(SICI)1098-2760(19960620)12:3%3C129::AID-MOP3%3E3.0.CO.
GURKO, A.A. “Estimation of opportunity of boosting the efficiency of millimetre-wave magnetron using non p-mode,” Radio Physics and Radio Astronomy, v.5, n.1, p.80-84, 2000.
GRITSAENKO, S.V.; EREMKA, V.D.; KOPOT, M.A.; KULAGIN, O.P.; NAUMENKO, V.D.; SUVOROV, A.N. “Vacuum and solid-state electronics. Multiresonator magnetrons with cold secondary-emisson cathode: Achevements, problems, perspectives,” Radiofiz. Elektron., v.10, p.499-529, 2005.
AVTOMONOV, N.I.; NAUMENKO, V.D.; VAVRIV, D.M.; SCHUNEMANN, Klaus; SUVOROV, A.N.; MARKOV, V.A. “Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron with cold cathode,” IEEE Trans. Electron Devices, v.59, n.12, p.3608-3611, 2012. DOI: https://doi.org/10.1109/TED.2012.2217974.
NAUMENKO, V.D.; SUVOROV, A.N.; MARKOV, V.A.; AVTOMONOV, N.I.; YERYOMKA, V.D.; KOROL’, M.A.; KULAGIN, O.P.; KIM, Jung-Il. “Development of Ka-range magnetron for portable radar,” Proc. of 20th Int. Crimean Conf. on Microwave & Telecommunication Technology, CriMiCo’2010, 13-17 Sept. 2010, Sevastopol, Crimea, Ukraine. IEEE, 2010, p.305-307. DOI: https://doi.org/10.1109/CRMICO.2010.5632848.
ESFAHANI, N.N.; SCHUNEMANN, Klaus; AVTOMONOV, N.I.; VAVRIV, D.M. “Epsilon near zero loaded magnetrons, design and realization,” Proc. of 45th European Microwave Conf., 7-10 Sept. 2015, Paris, France. IEEE, 2015, p.454-457. DOI: https://doi.org/10.1109/EuMC.2015.7345798.
SOSNYTSKIY, S.V.; VAVRIV, D.M. “Theory of the spatial-harmonic magnetron: an equivalent network approach,” IEEE Trans. Plasma Sci., v.30, n.3, p.984-991, 2002. DOI: https://doi.org/10.1109/TPS.2002.801616.
SCHUNEMANN, K.; SOSNYTSKIY, S.V.; VAVRIV, D.M. “Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode,” IEEE Trans. Electron. Devices, v.48, n.5, p.993-998, 2001. DOI: https://doi.org/10.1109/16.918248.
SCHUNEMANN, K.; SEREBRYANNIKOV, A.E.; SOSNYTSKIY, S.V.; VAVRIV, D.M. “Optimizing the spatial-harmonic millimeter-wave magnetron,” Phys. Plasmas, v.10, n.6, p.2559, 2003. DOI: https://doi.org/10.1063/1.1565337.
NAUMENKO, V.D.; SCHUNEMANN, K.; VAVRIV, D.M. “Miniature 1 kW, 95 GHz magnetrons,” Electron. Lett., v.35, n.22, p.1960-1961, 1999. DOI: https://doi.org/10.1049/el:19991337.
SCHUENEMANN, K.; TRUSH, B.V.; VAVRIV, D.M.; VOLKOV, V.A. “Magnetron transmitters for millimeter-wave coherent radar systems,” Radio Physics and Radio Astronomy, v.4, n.4, p.357-361, 1999.
SIEGEL, P.H. “Terahertz technology,” IEEE Trans. Microwave Theory Tech., v.50, n.3, p.910-928, 2002. DOI: https://doi.org/10.1109/22.989974.
DRAGOMAN, D.; DRAGOMAN, M. “Terahertz fields and applications,” Proc. Quantum Electron., v.28, n.1, p.1-66, 2004. DOI: https://doi.org/10.1016/S0079-6727(03)00058-2.
DONG, Y.; ITOH, T. “Promising future of metamaterials,” IEEE Microwave Mag., v.13, n.2, p.39-56, 2012. DOI: https://doi.org/10.1109/MMM.2011.2181447.
ELEFTHERIADES, G.V. “Metamaterials: The first ten years,” IEEE Microwave Mag., v.13, n.2, p.8-10, 2012. DOI: https://doi.org/10.1109/MMM.2011.2181602.
MOISEENKO, A.E.; NAUMENKO, V.D.; SUVOROV, A.N.; SYROV, A.R. “Long life 3 mm pulse magnetron,” Radio Physics and Radio Astronomy, v.8, n.4, p.421-428, 2003.
AVTOMONOV, N.I.; SOSNYTSKIY, S.V.; VAVRIV, D.M. “Investigation and optimization of auxiliary cathode for secondary emission cold-cathode magnetrons,” Radio Physics and Radio Astronomy, v.12, n.3, p.320-329, 2007.
KOPYLOV, M.F. “Design and technology features of heating-free magnetrons with autoemission excitation,” J. Vacuum Sci. Technol. B: Microelectron. Nanometer Structures Processing, Measurement, and Phenomena, v.11, n.2, p.481, 1993. DOI: https://doi.org/10.1116/1.586845.
NAUMENKO, V.D.; CHERENSHCHIKOV, S.A. “Investigation of the start-up of a magnetron with a cold secondary-emission cathode of the decay side of the voltage pulse,” Radiophys. Quantum Electron., v.27, n.2, p.168, 1984. DOI: https://doi.org/10.1007/BF01035126.
AVTOMONOV, N.I.; VAVRIV, D.M.; SOSNYTSKY, S.V. “Theoretical study of cold start of magnetrons with secondary emission cathode,” Radioelectron. Commun. Syst., v.53, n.1, p.1, 2010. DOI: https://doi.org/10.3103/S0735272710010012.
SOIN, A.V. “Excitation of microwave oscillation in magnetron with cold secondary-emission cathode by injecting a microwave signal,” Radio Physics and Radio Astronomy, v.8, n.3, p.333, 2003.