Polarized X-band Doppler radar scatterometer for investigation of microwave scattering of the wavy water surface in laboratory conditions

Authors

  • V. I. Abramov Radiophysical Research Institute, Russian Federation
  • E. M. Zuikova Institute of Applied Physics, Russian Federation
  • D. A. Sergeev Institute of Applied Physics, Russian Federation https://orcid.org/0000-0003-4910-3935
  • Yu. I. Troitskaya Institute of Applied Physics, Russian Federation
  • A. V. Ermoshkin Institute of Applied Physics, Russian Federation
  • V. I. Kazakov Institute of Applied Physics, Russian Federation

DOI:

https://doi.org/10.3103/S0735272717090023

Keywords:

Doppler radar scattermeter, sea surface, cross polarization, laboratory experiments

Abstract

The paper describes an experimental model of continuous wave X-band Doppler radar scatterometer (sine frequency modulation) designed for physics investigation of radio waves scattering from sea surface in controlled conditions. The prototype is developed and fabricated at the IAP RAS. Its main feature is adaptation to the conditions of a laboratory modeling in the wind-wave flumes to investigate the dependence of the normalized radar cross-section (NRCS) on the wind speed. The design of the microwave and antenna systems allows measurement of scattered radiation power and its Doppler spectrum both at linear co- and cross-polarizations (in a sequential switching mode). This is important from the viewpoint of studying the waves at high wind speeds. The detailed description of the design and its specifications are presented. Also the problems of calibration and results of experimental operation on the high-speed wind-wave flume of IAP RAS are discussed.

References

YUROVSKY, Y.Y.; SERGIEVSKAYA, I.A.; ERMAKOV, S.A.; CHAPRON, B.; KAPUSTIN, I.A.; SHOMINA, O.V. Influence of wind wave breakings on a millimeter-wave radar backscattering by the sea surface. Phys. Oceanography, n.4, p.37, 2015. DOI: http://doi.org/10.22449/1573-160X-2015-4-34-45.

KULEMIN, G.P.; RAZSKAZOVSKII, V.B. The Small-Angle Scattering of Millimeter Waves by the Earth’s Surface [in Russian]. Kyiv: Naukova Dumka, 1987.

ZAPEVALOV, A.S. Bragg scattering of centimeter electromagnetic radiation from the sea surface: The effect of waves longer than Bragg components. Izv. Atmos. Ocean. Phys., v.45, n.2, p.253-261, 2009. DOI: https://doi.org/10.1134/S0001433809020108.

KARAEV, V.Y.; MESHKOV, E.M.; CHU, X. Features of sea-wave classification in problems of remote sensing. Izv. Atmos. Ocean. Phys., v.49, n.9, p.919-929, 2013. DOI: https://doi.org/10.1134/S0001433813090181.

KRAVCHENKO, V.F.; LUTSENKO, V.I.; LUTSENKO, I.V. Scattering of Radio Waves by Sea and Detection of Objects on the Its Background [in Russian]. Moscow: Fizmatlit, 2015. ISBN 978-5-9221-1613-8.

LEHNER, S.; HORSTMANN, J.; KOCH, W.; ROSENTHAL, W. Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res., v.103, n.C4, p.7847-7856, 1998. DOI: http://doi.org/10.1029/97JC02726.

HORSTMANN, J.; SCHILLER, H.; SCHULZ-STELLENFLETH, J.; LEHNER, S. Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote Sens., v.41, n.10, p.2277-2286, 2003. DOI: http://doi.org/10.1109/TGRS.2003.814658.

MONALDO, F.M.; THOMPSON, D.R.; BEAL, R.C.; PICHEL, W.G.; CLEMENTE-COLON, P. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens., v.39, n.12, p.2587-2600, 2001. DOI: http://doi.org/10.1109/36.974994.

HWANG, P.A.; ZHANG, B.; PERRIE, W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophys. Res. Lett., v.37, n.1, p.L01604, 2010. DOI: http://doi.org/10.1029/2009GL041780.

HERSBACH, H. Comparison of C-band scatterometer CMOD5.N equivalent neural winds with ECMWF. J. Atmos. Oceanic Technol., v.27, p.721-736, 2010. DOI: http://doi.org/10.1175/2009JTECHO698.1.

HERSBACH, H.; STOFFELEN, A.; DE HAAN, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., v.112, n.C3, p.C03006, 2007. DOI: http://doi.org/10.1029/2006JC003743.

HWANG, P.A.; ZHANG, B.; TOPORKOV, J.V.; PERRIE, W. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geophys. Res., v.115, n.C8, p.C08019, 2010. DOI: http://doi.org/10.1029/2009JC005995.

ZHANG, B.; PERRIE, W.; HE, Y. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res., v.116, n.C8, p.C08008, 2011. DOI: http://doi.org/10.1029/2010JC006522.

VACHON, P.W.; WOLFE, J. C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote Sens. Lett., v.8, n.3, p.456-459, 2011. DOI: http://doi.org/10.1109/LGRS.2010.2085417.

ZHANG, B.; PERRIE, W. Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bull. Amer. Meteor. Soc., v.93, p.531-541, 2012. DOI: http://doi.org/10.1175/BAMS-D-11-00001.1.

KOMAROV, S.; KOMAROV, A.; ZABELINE, V. Marine wind speed retrieval from RADARSAT-2 dual-polarization imagery. Can. J. Remote Sensing, v.37, n.5, p.520-528, 2011. DOI: http://dx.doi.org/10.5589/m11-063.

VAN ZADELHOFF, G.J.; STOFFELEN, A.; VACHON, P.W.; WOLFE, J.; HORSTMANN, J.; BELMONTE RIVAS, M. Scatterometer hurricane wind speed retrievals using cross polarization. Atmos. Meas. Tech. Discuss., v.7, n.2, p.7945-7984, 2013. DOI: http://doi.org/10.5194/amtd-6-7945-2013.

UHER, J.; BORNEMANN, J.; ROSENBERG, U. Waveguide Components for Antenna Feed Systems: Theory and CAD. Michigan University: Artech House, 1993.

RUDGE, A.W.; MILNE, K.; OLIVER, A.D.; KNIGHT, P. The Handbook of Antenna Design. London: Short Run Press LTD, 1982.

VINITSKY, A.S. Autonomous Radio Systems: Manual for Higher Education Institutions [in Russian]. Moscow: Radio i Svyaz’, 1986.

SKOLNIK, M.I. Radar Handbook, Vol. 3: Radars Systems, 3rd ed. McGraw-Hill Education, 2008.

TROITSKAYA, Y.I.; SERGEEV, D.A.; KANDAUROV, A.A.; BAIDAKOV, G.A.; VDOVIN, M.A.; KAZAKOV, V.I. Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J. Geophys. Res., v.117, n.C11, p.C00J21, 2012. DOI: http://doi.org/10.1029/2011JC007778.

VALENZUELA, G.R. Theories for the interaction of electromagnetic and oceanic waves — A review. Boundary-Layer Meteorology, v.13, n.1-4, p.61-85, 1978. DOI: http://doi.org/10.1007/BF00913863.

TROITSKAYA, Y.; ABRAMOV, V.; ERMOSHKIN, A.; ZUIKOVA, E.; KAZAKOV, V.; SERGEEV, D.; KANDAUROV, A.; ERMAKOVA, O. Laboratory study of cross-polarized radar return under gale-force wind conditions. Int. J. Remote Sens., v.37, n.9, p.1981-1989, 2016. DOI: http://doi.org/10.1080/01431161.2016.1160301.

Published

2017-09-21

Issue

Section

Research Articles