Simulation of high-power 8-mm band avalanche-oscillator diodes

Authors

  • Pavlo P. Maksymov Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.3103/S0735272717080064

Keywords:

avalanche-oscillator diode, discrete Fourier spectrum, electronic efficiency

Abstract

The results of computer simulation of 8-mm band high-power avalanche-oscillator diodes (AOD) based on abrupt reverse biased p–n junctions with constant voltage have been presented. It is shown that AOD synchronously generate two oscillations in p- and n-regions of p–n junction, respectively. A technique is proposed for determining the parameters that ensure the diode operation in the mode of coherent oscillations. It is shown that the diode output power in this operation mode increases at the expense of summing-up the electron and hole components. The dynamic range of output power and the electronic efficiency are also determined.

References

TAGER, A.S.; VAL’D-PERLOV, V.M. Avalanche Transit-Time Diodes and Their Application in Microwave Technology [in Russian]. Moscow: Sov. Radio, 1968.

CARROLL, J.E. Hot Electron Microwave Generators. Hodder & Stoughton Edu., 1970.

KASATKIN, L.V.; CHAIKA, V.E. Semiconductor Devices for Millimeter Wave Range [in Russian]. Sevastopol: Veber, 2006.

LUKIN, K.A.; CERDEIRA, H.A.; MAKSYMOV, P.P. Self-oscillations in reverse biased p-n-junction with current injection. Appl. Phys. Lett., v.83, n.20, p.4643, 2003. DOI: http://dx.doi.org/10.1063/1.1627939.

LUKIN, K.A.; CERDEIRA, H.A.; COLAVITA, A.A.; MAKSYMOV, P.P. Internal amplification of current pulses inside a reverse-biased pnipn-structure. Int. J. Modeling Simulation, v.23, n.2, p.77-84, 2003. URL: http://www.tandfonline.com/doi/abs/10.1080/02286203.2003.11442257?journalCode=tjms20.

LUKIN, K.A.; MAKSYMOV, P.P. Self-excited oscillations in abrupt p-n junctions with a fixed reverse bias. Telecom. Radio Eng., v.69, n.11, p.1005-1017, 2010. DOI: http://doi.org/10.1615/TelecomRadEng.v69.i11.70.

MAKSYMOV, P.P. A solution algorithm for the drift-diffusion model of semiconducting structures with avalanche p-n junctions. Telecom. Radio Eng., v.69, n.11, p.1019-1030, 2010. DOI: http://doi.org/10.1615/TelecomRadEng.v69.i11.80.

LUKIN, K.A.; MAKSYMOV, P.P. Coherent power combining in avalanche-oscillator diodes. Telecom. Radio Eng., v.72, n.4, p.1509-1519, 2013. DOI: http://doi.org/10.1615/TelecomRadEng.v72.i16.60.

LUKIN, K.A.; MAKSYMOV, P.P. Volt-ampere characteristic and external induced current in avalanche-generator diodes with reverse-biased abrupt junctions. Telecom. Radio Eng., v.75, n.12, p.1073-1086, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i12.40.

MAKSYMOV, P.P.; LUKIN, K.A. Negative differential conductivity of avalanche-oscillator diodes based on reverse-biased abrupt p-n junctions. Prikladnaya Radioelektronika, v.14, n.3, p.203-209, 2015.

LUKIN, K.A.; MAKSYMOV, P.P.; CERDEIRA, H.A. Photoelectron multipliers based on avalanche pn-i-pn structures. Eur. Phys. J. Spec. Top., v.223, n.13, p.2989-2999, 2014. DOI: http://doi.org/10.1140/epjst/e2014-02312-x.

SAMARSKII, A.A.; POPOV, Y.P. Difference Methods for Solving Gas Dynamics Problems [in Russian]. Moscow: Nauka, 1980.

KUZNETSOV, S.P. Dynamic Chaos [in Russian]. Moscow: Izdat. FML, 2001.

MAKSYMOV, P.P. Operating modes of microwave avalanche-oscillator diodes. Telecom. Radio Eng., v.75, n.6, p.563-573, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i6.70.

BASANETS, V.V.; BOLTOVETZ, N.S.; ZORENKO, A.V.; GUTSUL, A.V.; ET AL. High-power silicon 8-mm band pulse avalanche transit-time diodes. Tekhnika i Pribory SVCh, n.1, p.27-30, 2009.

BELYAEV, A.E.; BASANETS, V.V.; BOLTOVETS, N.S.; ZORENKO, A.V.; KAPITANCHUK, L.M.; KLADKO, V.P.; KONAKOVA, R.V.; KOLESNIK, N.V.; KOROSTINSKAYA, T.V.; KRITSKAYA, T.V.; KUDRYK, Y.Y.; KUCHUK, A.V.; MILENIN, V.V.; ATAUBAEVA, A.B. Effect of p-n junction overheating on degradation of silicon high-power pulsed IMPATT diodes. Semiconductors, v.45, n.2, p.253-259, 2011. DOI: http://doi.org/10.1134/S1063782611020047.

Published

2017-08-25

Issue

Section

Research Articles