Noise emissions sources direction-finding in the process of their background air threats detection in radars with phased antenna array
DOI:
https://doi.org/10.3103/S0735272717070032Keywords:
sources of noise emissions, spatial processing, adaptive radiation pattern, super-resolution direction-finding, adaptive grid filterAbstract
We analyze two options of combined systems for spatial signal processing in radars with phased antenna array, where the detection of noiseless point targets with background noise emissions is accompanied by the direction finding of their sources. In the first option the direction finding of noise emissions is based on the shape analysis of the adaptive radiation pattern of the phased antenna array, formed during the adaptive target finding with background noise emissions. In the second option the bearing angles are determined on the basis of maxima of “spectral functions” of different evaluations of correlation matrix, formed on the basis of input readings. An example how to build such a combined system for spatial signal processing based on general adaptive grid filter is presented. It is shown that the effect of simultaneous target finding in external noise background and direction finding of their sources is achieved by single utilization of the most complex tuning operation of the adaptive grid filter. This operation is same for both of these tasks, and it is easier comparing to solving these two problems separately.References
SHIRMAN, Y.D.; BAGDASARYAN, S.T.; MALYARENKO, A.S.; LEKHOVYTSKIY, D.I.; ET AL. Radioelectronic Systems: Theory and Design Fundamentals. Reference Guide, 2nd ed. [in Russian, ed. by Ya. D. Shyrman]. Moscow: Radiotekhnika, 2007.
SKOLNIK, M.I. (ed.), Radar Handbook, 3rd ed. McGraw-Hill, 2008.
CHEN, Z.; GOKEDA, G.; YU, Y. Introduction to Direction-of-Arrival Estimation. Artech House, 2010.
SHIRMAN, Y.D.; MANZHOS, V.N.; LEKHOVYTSKIY, D.I. Some development stages and problems of theory and techniques of radar signal resolution. Radiotekhnika, n.1, p.31-42, 1997.
RIABUKHA, VIACHESLAV P.; RACHKOV, DMYTRO S.; SEMENIAKA, ANDRII V.; KATIUSHYN, YEVHEN A. Estimation of spatial weight vector fixation interval for sequential space-time signal processing against the background of combined interferences. Radioelectron. Commun. Syst., v.55, n.10, p.443-451, 2012. DOI: http://dx.doi.org/10.3103/S0735272712100020.
STOICA, P.; MOSES, R.L. Introduction to Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1997.
ASHIKHMIN, A.V.; KOZMIN, V.A.; NEGROBOV, V.V.; PASTERNAK, Y.G.; REMBOVSKII, Y.A. The superresolution algorithm's perfection of correlated radio-frequency radiation sources by construction of phasing function subject to antenna array's elements' interference. Vestnik VGU. Ser. Fizika, Matematika, v.5, n.9, 2009.
LEKHOVYTSKIY, D.I.; SHIFRIN, Y.S.; ATAMANSKIY, D.V. Rapidly convergent “superresolving” direction finders of noise radiation sources in adaptive arrays. Proc. of Int. Conf. on Antenna Theory and Techniques, ICATT, 16-20 Sept. 2013, Odessa, Ukraine. IEEE, 2013, p.28-33. DOI: https://doi.org/10.1109/ICATT.2013.6650679.
LEKHOVYTSKIY, D.I.; SHIFRIN, Y.S. Statistical analysis of “superresolving” methods for direction-of-arrival estimation of noise radiation sources under finite size of training sample. Signal Processing, v.93, n.12, p.3382-3399, 2013. DOI: https://doi.org/10.1016/j.sigpro.2013.03.008.
GERSHMAN, A.B. Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding. IEEE Trans. Signal Process., v.46, n.5, p.1351-1364, May 1998. DOI: https://doi.org/10.1109/78.668797.
ZOTOV, S.A.; MAKAROV, Y.S.; NECHAEV, Y.B. Methods of super-resolution in radar direction finding. Information Processes and Technologies in Society and Economics, n.3, p.12-26, 2006. URL: http://www.lerc.ru/informatics/0003/0002/.
MAKAROV, Y.S.; NECHAEV, Y.B. Enhancement of direction finding accuracy for super-resolving processing algorithms. Vestnik VGU. Ser. Fizika, Matematika, v.4, n.2, p.59-62, 2008.
CHUDOPALOV, I.V. Comparative analysis of super-resolving methods in antenna arrays. T-Comm – Telecommunications and Transport, n.6, 2008. URL: https://elibrary.ru/item.asp?id=12229925.
VASYLYSHYN, VOLODYMYR I. Adaptive variant of the surrogate data technology for enhancing the effectiveness of signal spectral analysis using eigenstructure methods. Radioelectron. Commun. Syst., v.58, n.3, p.116-126, 2015. DOI: http://dx.doi.org/10.3103/S0735272715030036.
GRIGORYAN, D.S.; SEMCHENKOV, S.M. Distance super-resolution for processing of radar signals with linear frequency modulation and coherent method of linear presiction ‘forward-backward’ with data decimation. Radioelectronics Journal, n.8, 2011. URL: http://jre.cplire.ru/koi/aug11/2/text.html.
AL-AZZO, M.F.; AL-SABAAWI, K.I. Comparison between classical and modern methods of direction of arrival (DOA) estimation. Int. J. Advances Engineering & Technology, v.7, n.3, p.1082-1090, 2014. URL: http://www.e-ijaet.org/media/53I21-IJAET0721311_v7_iss3_1091-1108.pdf.
YU, HUAXIN; QIU, XIAOFENG; ZHANG, XIAOFEI; WANG, CHENGHUA; YANG, GANG. Two-dimensional direction of arrival (DOA) estimation for rectangular array via compressive sensing trilinear model. Int. J. Antennas Propag., v.2015, ID 297572, 2015. DOI: http://dx.doi.org/10.1155/2015/297572.
HONG, J.-G.; PARK, C.-S.; SEO, B.-S. Comparison of MUSIC and ESPRIT for direction of arrival estimation of jamming signal. Proc. of 2012 IEEE Int. Instrumentation and Measurement Technology Conf., I2MTC, 13-16 May 2012, Graz, Austria. IEEE, 2012, p.1741-1744. DOI: https://doi.org/10.1109/I2MTC.2012.6229509.
GELIUS, LEIV-J.; TYGEL, MARTIN; TAKAHATA, ANDRÉ K.; ASGEDOM, ENDRIAS G.; SERRANO, DANY R. High-resolution imaging of diffractions—A window-steered MUSIC approach. Geophysics, v.78, n.6, p.S255-S264, 2013. DOI: https://doi.org/10.1190/geo2013-0047.1.
LEE, J.-H.; JEONG, Y.-S.; CHO, S.-W.; YEO, W.-Y.; PISTER, K.S.J. Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm. PIER, v.116, p.475-515, 2011. DOI: http://dx.doi.org/10.2528/PIER10112608.
JOHNSON, B.A.; ABRAMOVICH, Y.I.; MESTRE, X. MUSIC, G-MUSIC, and maximum-likelihood performance breakdown. IEEE Trans. Signal Process., v.56, n.8, p.3944-3958, 2008. DOI: https://doi.org/10.1109/TSP.2008.921729.
HUANG, X.; GUO, Y. JAY; BUNTON, J.D. Two decades of array signal processing research. IEEE Trans. Wireless Commun., v.9, p.1770-1779, 2010. DOI: https://doi.org/10.1109/79.526899.
ABRAMOVICH, Y.I.; JOHNSON, B.A. Detection-estimation of very close emitters: performance breakdown, ambiguity, and general statistical analysis of maximum-likelihood estimation. IEEE Trans. Signal Process., v.58, n.7, p.3647-3660, 2010. DOI: https://doi.org/10.1109/TSP.2010.2047334.
TIDD, W.G. Sequential Beamspace Smart Antenna System. Master’s Thesis. Montana State University, 2011.
KRITCHMAN, S.; NADLER, B. Non-parametric detection of the number of signals: hypothesis testing and random matrix theory. IEEE Trans. Signal Process., v.57, n.10, p.3930-3941, 2009. DOI: https://doi.org/10.1109/TSP.2009.2022897.
FOUTZ, J.; SPANIAS, A.; BANAVAR, M.K. Narrowband direction of arrival estimation for antenna arrays. Synthesis Lectures on Antennas, v.3, n.1, p.1-76, 2008. DOI: https://doi.org/10.2200/S00118ED1V01Y200805ANT008.
LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; RIABUKHA, V.P.; ATAMANSKIY, D.V. Adaptive grid filters. Part I, II, Applied Radioelectronics, v.10, n.4, p.380-418, 2011.
LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G. Types of super-resolving analyzers of spatial-temporal random signals spectrum based on ‘whitening’ adaptive grid filters. Antennas, n.2, p.19-32, 2000.
LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; DZHUS, V.V.; ZHUGA, G.A. Combined direction finders of point interference sources based on adaptive grid filters. Applied Radioelectronics, v.5, n.3, p.306-315, 2006.