Four new oscillators using operational transresistance amplifier

Authors

DOI:

https://doi.org/10.3103/S0735272717050028

Keywords:

oscillator’ operational transresistance amplifier, analog integrated circuit design, current mode oscillator, sinusoidal oscillator

Abstract

In this paper, four new sinusoidal waveform generators based on the operational transresistance amplifier (OTRA) are presented. The first proposed circuit is a minimum component RC sinusoidal oscillator circuit with one OTRA and a few passive components. The second and third proposed circuits consist of one OTRA and a few passive components, among them two passive components are connected to ground. These circuits are able to control the condition of oscillation and frequency of oscillation independently. The fourth proposed quadrature oscillator circuit uses two OTRAs as main active building blocks and a few external passive components to generate the oscillations. The commercially available IC AD844AN has been adopted to implement the proposed circuits on a laboratory breadboard with external passive components. Both the SPICE simulation and experimental results are given to verify the theoretical analysis of the proposed circuits.

Author Biographies

Pittala Chandra Shaker, Vignan University

Dean (Research & Development) from July 16, 2013 to till date and 

Professor of Electronics & Communication Engineering, Vignan's Foundation for Science, Technology & Research University, Vadlamudi, India, from June 6, 2011 to till date.

Avireni Srinivasulu, JECRC University

Dean (R&D),

Professor of Electronics and Communication Engineering,

Vignan's University,

Vadlamudi-52213,

Guntur, A.P, India.

References

BUDAK, A. Passive and Active Network Analysis and Synthesis. Boston: Houghton Mifflin, 1974.

SOLIMAN, AHMED M.; AL-SHAMAA, MOHAMMED H.; Al-Bab, DAK, MOHAMMED. Active compensation of RC oscillators. Frequenz, v.42, n.11-12, p.325-332, 1988. doi:http://dx.doi.org/10.1515/FREQ.1988.42.11-12.325.

BOLTON, W. Measurement and Instrumentation Systems. Oxford, UK: Newnes, 1996.

GIBSON, J.D. The Communications Handbook. Boca Raton, Fla, USA: CRC Press, 1997.

SOLIMAN, AHMED M. Simple sinusoidal active RC oscillators. Int. J. Electron., v.39, n.4, p.455-458, 1975. doi:http://dx.doi.org/10.1080/00207217508920504.

CHANG, C.-M. Novel current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electron. Lett., v.30, n.3, p.181-183, 1994. doi:http://dx.doi.org/10.1049/el:19940133.

HORNG, JIUN-WEI; HOU, CHUN-LI; CHANG, CHUN-MING; CHUNG, WEN-YAW; TANG, HAN-WEI; WEN, YAO-HSIN. Quadrature oscillators using CCIIs. Int. J. Electron., v.92, n.1, p.21-31, 2005. doi:http://dx.doi.org/10.1080/00207210412331332899.

SRINIVASULU, AVIRENI. A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory and Applications, v.39, n.6, p.679-686, 2010. doi:http://dx.doi.org/10.1002/cta.669.

ABUELMA’ATTI, M.T.; AL-GHUMAIZ, A.A.; KHAN, M.H. Novel CCII-based single-element controlled oscillators employing grounded resistors and capacitors. Int. J. Electron., v.78, n.6, p.1107-1112, 1995. doi:http://dx.doi.org/10.1080/00207219508926235.

PAL, DIPANKAR; SRINIVASULU, AVIRENI; PAL, BASAB BIJOY; DEMOSTHENOUS, ANDREAS; DAS, BARDA NAND. Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Trans. Instrum., Meas., v.58, n.7, p.2174-2180, 2009. doi:http://dx.doi.org/10.1109/TIM.2008.2006729.

LIU, SHEN-IUAN. Single-resistance-controlled/ voltage-controlled oscillator using current conveyors and grounded capacitors. Electron. Lett., v.31, n.5, p.337-338, 1995. doi:http://dx.doi.org/10.1049/el:19950259.

SOLIMAN, AHMED M. Current mode CCII oscillators using grounded capacitors and resistors. Int. J. Circuit Theory and Applications, v.26, n.5, p.431-438, 1998. doi:http://dx.doi.org/10.1002/(SICI)1097-007X(199809/10)26:5::AID-CTA213.0.CO.

BHASKAR, D.R.; GUPTA, S.S.; SENANI, R.; SINGH, A.K. New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integr. Circ. Signal Process., v.73, n.1, p.427-437, 2012. doi:http://dx.doi.org/10.1007/s10470-012-9896-6.

MARTINEZ, P.A.; SABADELL, J.; ALDEA, C. Grounded resistor controlled sinusoidal oscillator using CFOAs. Electron. Lett., v.33, n.5, p.346-348, 1997. doi:http://dx.doi.org/10.1049/el:19970229.

SRIVASTAVA, D.K.; SINGH, V.K.; SENANI, R. New very low frequency oscillator using only a single CFOA. American Journal of Electrical and Electronic Engineering, v.3, n.1, p.1-3, 2015. doi:http://dx.doi.org/10.12691/ajeee-3-1-1.

LAHIRI, ABHIRUP. New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoid generator. Active and Passive Electronic Components, v.2011, p.1-8, 2011. doi:http://dx.doi.org/10.1155/2011/274394.

RODRIGUEZ-VAZQUEZ, A.; LINARES-BARRANCO, B.; HUERTAS, J.L.; SANCHEZ-SINENCIO, E. On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans. Circuits Syst., v.37, n.2, p.198-211, 1990. doi:http://dx.doi.org/10.1109/31.45712.

TAO, YUFEI; FIDLER, J.K. Electronically tunable dual-OTA second-order sinusoidal oscillators/filters with non-interacting controls: a systematic synthesis approach. IEEE Trans. Circuits Syst., v.47, n.2, p.117-129, 2000. doi:http://dx.doi.org/10.1109/81.828566.

PROMMEE, PIPAT; DEJHAN, KOBCHAI. An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. Int. J. Electronics, v.89, n.5, p.365-379, 2002. doi:http://dx.doi.org/10.1080/713810385.

AHMED, M.T.; KHAN, I.A.; MINHAJ, N. On transconductance-C quadrature oscillators. Int. J. Electronics, v.83, n.2, p.201-208, 1997. doi:http://dx.doi.org/10.1080/002072197135526.

LIU, SHEN-IUAN. Single-resistance-controlled sinusoidal oscillator using two FTFNs. Electron. Lett., v.33, n.14, p.1185-1186, 1997. doi:http://dx.doi.org/10.1049/el:19970833.

ABUELMA’ATTI, M.T.; AL-ZAHER, H.A. Current-mode sinusoidal oscillators using single FTFN. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process., v.46, n.1, p.69-74, 1999. doi:http://dx.doi.org/10.1109/82.749100.

SINGH, V. Equivalent forms of dual-OTA RC oscillators with application to grounded-capacitor oscillators. IEE Proceedings: Circuits, Devices and Systems, v.153, n.2, p.95-99, 2006. doi:http://dx.doi.org/10.1049/ip-cds:20050099.

CHIU, W.; LIU, S.-I.; TSAO, H.-W.; CHEN, J.-J. CMOS differential difference current conveyors and their applications. IEE Proceedings: Circuits, Devices and Systems, v.143, n.2, p.91-96, 1996. doi:http://dx.doi.org/10.1049/ip-cds:19960223.

KUMNGERN, M.; DEJHAN, K. DDCC-based quadrature oscillator with grounded capacitors and resistors. Active and Passive Electronic Components, v.2009, p.1-4, 2009. doi:http://dx.doi.org/10.1155/2009/987304.

KUNTMAN, H.; ÖZPINAR, A. On the realization of DO-OTA-C oscillators. Microelectron. J., v.29, n.12, p.991-997, 1998. doi:http://dx.doi.org/10.1016/S0026-2692(98)00063-9.

ÖZCAN, S.; TOKER, A.; ACAR, C.; KUNTMAN, H.; ÇIÇEKOĢLU, O. Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron. J., v.31, n.3, p.169-174, 2000. doi:http://dx.doi.org/10.1016/S0026-2692(99)00113-5.

HORNG, J.-W. Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors. IEICE Trans. Fund. Elec., Commun. Computer Sci., v.E85-A, n.6, p.1416-1419, 2002. url:http://search.ieice.org/bin/summary.php?id=e85-a_6_1416.

SALAMA, K.N.; SOLIMAN, A.M. CMOS operational transresistance amplifier for analog signal processing applications. Microelectron. J., v.30, n.3, p.235-245, 1999. doi:http://dx.doi.org/10.1016/S0026-2692(98)00112-8.

CHEN, J.-J.; TSAO, H.-W.; CHEN, C.-C. Operational transresistance amplifier using CMOS technology. Electron. Lett., v.28, n.22, p.2087-2088, 1992. doi:http://dx.doi.org/10.1049/el:19921338.

LO, YU-KANG; CHIEN, HUNG-CHUN. Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans. Circuits Syst. II: Express Briefs, v.54, n.12, p.1110-1114, 2007. doi:http://dx.doi.org/10.1109/TCSII.2007.905879.

TOKER, A.; OZOGUZ, S.; CICEKOGLU, O.; ACAR, C. Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q band pass filter configuration. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process., v.47, n.9, p.949-954, 2000. doi:http://dx.doi.org/10.1109/82.868465.

LO, Y.-K.; CHIEN, H.-C. Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circuits Devices Syst., v.1, n.3, p.257-261, 2007. doi:http://dx.doi.org/10.1049/iet-cds:20060359.

SALAMA, K.N.; SOLIMAN, A.M. Novel oscillators using the operational transresistance amplifier. Microelectron. J., v.31, n.1, p.39-47, 2000. doi:http://dx.doi.org/10.1016/S0026-2692(99)00087-7.

ÇAM, U. A. A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integrated Circuits and Signal Processing, v.32, n.2, p.183-186, 2002. doi:http://dx.doi.org/10.1023/A:1019586328253.

CHIEN, HUNG-CHUN. New realizations of single OTRA-based sinusoidal oscillators. Active and Passive Electronic Components, v.2014, p.1-12, 2014. doi:http://dx.doi.org/10.1155/2014/938987.

GUPTA, ASHISH; SENANI, RAJ; BHASKAR, D.R.; SINGH, A.K. OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst. Signal Process., v.31, n.2, p.489-499, 2012. doi:http://dx.doi.org/10.1007/s00034-011-9345-2.

PANDEY, R.; PANDEY, N.; KUMAR, R.; SOLANKI, G. A novel OTRA based oscillator with non interactive control. Proc. of Int. Conf. on Computer and Communication Technology, 17-19 Sept. 2010. IEEE, 2010, p.658-660. doi:http://dx.doi.org/10.1109/iccct.2010.5640448.

PANDEY, R.; BOTHRA, M. Multiphase sinusoidal oscillators using operational trans-resistance amplifier. Proc. of IEEE Symp. on Industrial Electronics and Applications, 4-6 Oct. 2009. IEEE, 2009, p.371-376. doi:http://dx.doi.org/10.1109/isiea.2009.5356432.

PANDEY, R.; PANDEY, N.; KOMANAPALLI, G.; ANURAG, R. OTRA based voltage mode third order quadrature oscillator. ISRN Electronics, v.2014, p.1-5, 2014. doi:http://dx.doi.org/10.1155/2014/126471.

SRINIVASULU, A.; SHAKER, P. CHANDRA. Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans. Circuits Syst., v.13, p.145-152, 2014. url:http://www.wseas.org/multimedia/journals/circuits/2014/a145701-253.pdf.

SHAKER, P. CHANDRA; SRINIVASULU, A. A sinusoidal oscillator using single operational transresistance amplifier. Proc. of IEEE Int. Conf. on Advance Computing, ICoAC, 18-20 Dec. 2013. IEEE, 2013, p.508-511. doi:http://dx.doi.org/10.1109/ICoAC.2013.6922003.

SHAKER, P. CHANDRA; SRINIVASULU, AVIRENI. Quadrature oscillator using operational transresistance amplifier. Proc. of IEEE Int. Conf. on Applied Electronics, 9-10 Sept. 2014, Pilsen, Czech Republic. IEEE, 2014, p.117-120. doi:http://dx.doi.org/10.1109/AE.2014.7011681.

CHEN, J.-J.; TSAO, H.-W.; LIU, S.-I.; CHIU, W. Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proceedings: Circuits, Devices and Systems, v.142, n.3, p.186-192, 1995. doi:http://dx.doi.org/10.1049/ip-cds:19951950.

Analog Devices Inc, AD844AN (datasheet), http://www.analog.com/static/imported-files/data_sheets/AD844.pdf.

Published

2017-05-29

Issue

Section

Research Articles