Survey of existing designs of millimeter wave band magnetrons

Authors

  • Vasyl D. Naumenko Institute of Radio Astronomy of NASU, Ukraine

DOI:

https://doi.org/10.3103/S073527271704001X

Keywords:

magnetron, millimeter wave band, characteristics

Abstract

The paper considers main directions of development of pulsed magnetrons of millimeter wave band and presents the main characteristics of such devices produced by different enterprises. This paper is intended for a wide circle of researchers and engineers using the millimeter band magnetrons in their investigations and developments.

References

BERNSTEIN, M.J.; KROLL, N.M. Conventional Pulsed Rising Sun Magnetrons, in Cross-Field Microwave Devices, Vol. 2. New York: Academic Press, 1961 [ed. by E. Okress], p.224-228.

ASEMA, C. US Patent 2.734.148 Cl. 315-39.61, Applicant: Compagnie Generale de Telegraphe Sans Pil.

FEINSTEIN, J. US Patent 2.951.182, Cl. 315-39.77 (1960).

SKRIPKIN, N.I.; GURKO, A.A.; MARIN, V.P. A possibility of creating the pulsed coaxial magnetron of the two-millimeter wavelength band. Naukoemkie Tekhnologii, v.6, n.7-8, p.17-18, 2006.

GURKO, A.A.; YERYOMKA, V.D. The state and prospects of the development of magnetrons operating in the millimeter wavelength band. Proc. of 10th Int. Crimean Conf. on Microwave Equipment and Telecommunication Technologies, Krymiko-2000, 11-15 Sept. 2000, Crimea, Ukraine. Sevastopol: Veber, 2000.

TRUTEN’, I.D.; KRUPATKIN, I.G.; BARANOV, O.N.; GALUSHKO, N.N.; IGNATOV, V.E. Pulsed magnetrons of the millimeter wave band in the spatial harmonic mode. Ukr. J. Phys., v.20, n.7, p.1170-1176, 1975.

USIKOV, A.Y. (ed.), Electronics and Radio Physics of Millimeter and Submillimeter Radio Waves [in Russian]. Kyiv: Naukova Dumka, 1986.

COLLINS, G.B. (ed.), Microwave Magnetrons. N.Y.: McGraw Hill, 1948.

ATLASMAN, A.V.; GURKO, A.A.; TRUTEN’, I.D.; ET AL. On the physical conditions of stable single-frequency generation in surface-wave magnetrons. Works of IRE AS of USSR, v.18, p.5-21, 1970.

KOPYLOV, M.F.; BONDARENKO, B.V.; MAKHOV, V.I.; NAZAROV, V.A. SU Patent No. 1780444, Byull. Izobr., n.8, 1994.

KOPYLOV, M.F. Design and technology features of heating-free magnetrons with autoemission exitation. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Structures Processing, Measurement, and Phenomena, v.11, n.2, p.481-483, 1993. DOI: http://dx.doi.org/10.1116/1.586845.

GURKO, A.A.; YERYOMKA, V.D.; NAUMENKO, V.D.; SKRIPKIN, N.I. On physical processes in production of spatial charge in a heating-free magnetron with field emission triggering. Telecom. Radio Eng., v.68, n.6, p.507-516, 2009. DOI: http://doi.org/10.1615/TelecomRadEng.v68.i6.40.

SPENCER, P.L. US Patent 3.109.123, Cl. 315-39.63, Priority in the USA, 1962.

ZYBIN, M.N. Channelless magnetrons: yesterday, today, and tomorrow. Electronics: Science, Technology, Business, n.3, p.90-91, 2011. URL: http://www.electronics.ru/journal/article/2792.

JEPSEN, R.L.; MULLER, M.W. Enhanced emission from magnetron cathodes. J. Appl. Phys., v.22, n.9, p.1196-1207, 1951. DOI: http://dx.doi.org/10.1063/1.1700133.

VIGDORCHIK, I.M.; NAUMENKO, V.D.; TIMOFEEV, V.P. Pulsed magnetrons with cold secondary-emission cathode. DAN USSR. Ser. A: Fiziko-Matem. i Techn. Nauki, n.7, p.634-637, 1975.

VIGDORCHIK, I.M.; NAUMENKO, V.D. Millimeter-wave band magnetrons with cold cathode. Works of IRE AS of USSR, v.XXV, p.25-41, 1979.

NAUMENKO, VASILY; SUVOROV, ALEXANDER; SIROV, ALEXEY. Tunable magnetron of a two-millimeter-wavelength band. Microw. Opt. Technol. Lett., v.12, n.3, p.129-131, 1996. DOI: http://doi.org/10.1002/(SICI)1098-2760(19960620)12:3%3c129::AID-MOP3%3e3.0.CO.

NAUMENKO, V.D.; SUVOROV, A.N.; MOISEENKO, A.E. High-power pulsed magnetrons of 95 GHz band. Proc. of 21st Int. Crimean Conf. on Microwave Equipment and Telecommunication Technologies, KryMiKo-2011, 12-16 Sept. 2011, Crimea, Ukraine. Sevastopol: Veber, 2011.

NAUMENKO, V.D.; SCHUNEMANN, K.; VAVRIV, D.M. Miniature 1 kW, 95 GHz magnetrons. Electron. Lett., v.35, n.22, p.1960-1961, 1999. DOI: http://doi.org/10.1049/el:19991337.

MOISEENKO, A.E.; NAUMENKO, V.D.; SUVOROV, A.N.; SYROV, A.R. Long life 3 mm pulsed magnetron. Radio Physics and Radio Astronomy, v.8, n.4, p.421-428, 2003. URL: http://journal.rian.kharkov.ua/index.php/ra/article/view/767.

NAUMENKO, V.D.; SUVOROV, A.N.; MARKOV, V.A.; AVTOMONOV, N.I.; YERYOMKA, V.D.; KOROL’, M.A.; KULAGIN, O.P.; KIM, JUNG-IL. Development of Ka-range magnetron for portable radar. Proc. of 20th Int. Crimean Conf. on Microwave & Telecommunication Technology, CriMiCo’2010, 13-17 Sept. 2010, Sevastopol, Crimea, Ukraine. IEEE, 2010, p.305-307, DOI: http://doi.org/10.1109/CRMICO.2010.5632848.

AVTOMONOV, N.I.; NAUMENKO, V.D.; VAVRIV, D.M.; SCHUNEMANN, KLAUS; SUVOROV, A.N.; MARKOV, V.A. Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron with cold cathode. IEEE Trans. Electron Devices, v.59, n.12, p.3608-3611, 2012. DOI: http://doi.org/10.1109/TED.2012.2217974.

YERYOMKA, V.D.; KULAGIN, O.P.; NAUMENKO, V.D. Development and investigation of magnetrons in the O. Ya. Usik Institute for Radiophysics and Electronics and the Institute of Radio Astronomy of NASU. Radiofiz. Elektron., v.9, p.42-67, 2004.

YERYOMKA, V.D.; NAUMENKO, V.D. Investigation into and development of millimeter-wave band magnetrons in Kharkov. Uspekhi Sovremennoi Radioelektroniki. Zarubezhnaya Radioelektronika, n.4, p.23-58, 2008. URL: http://www.radiotec.ru/catalog.php?cat=jr4&art=2125.

KASATKIN, L.V.; RUKIN, V.P.; YERYOMKA, V.D.; ET AL. Vacuum-Tube Devices of Millimeter Wave Band [in Russian, ed. by V. P. Rukin]. Sevastopol: Veber, 2007.

GRITSAENKO, S.V.; YERYOMKA, V.D.; KOPOT’, M.A.; KULAGIN, O.P.; NAUMENKO, V.D.; SUVOROV, A.N. Multiresonator magnetrons with cold secondary-emission cathode: advances, problems and prospects. Radiofiz. Elektron., v.10, p.499-529, 2005.

VYSE, B.; SMITH, V.H. The evolution of miniature rugged magnetrons. Proc. of 2nd Conf. on Military microwaves ‘80, London, England, October 22-24, 1980. (A82-18901 07-32), Sevenoaks, Kent, England. Microwave Exhibitions and Publishers, Ltd., 1981, p.506-513.

KASATKIN, L.V. Pulsed generators under conditions of phase locking by a pulsed coherent signal (coherent magnetrons). Radioelectron. Commun. Syst., v.49, n.4, p.26-, 2006. URL: http://radioelektronika.org/article/view/S0735272706040054.

EREMIN, V.P.; MATSELIS, L.I.; PASTUKHOVA, A.V.; KHOKHLOVA, O.M. Generating two-stage complexation device of 3-mm wavelength band with electrical frequency tuning and output power of 10 kW. Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6-8 Sept. 2011, Nizhegorodskaya Oblast, Khakhaly, Nizhniy Novgorod, Russia. Nizhniy Novgorod, 2011.

IVANOV, I.; PETYUSHIN, N.; SKRIPKIN, N. Power combiner of magnetrons of 3-millimeter wavelength band. Electronics: Science, Technology, Business, n.5, p.92-94, 2015. URL: http://www.electronics.ru/journal/article/4713.

IVANOV, I.M.; EFREMOVA, M.V.; SKRIPKIN, N.I.; ET AL. Calculation and experimental investigation of power combiner of 3-mm band magnetrons with power output into free space by three coherent radiators. Elekronnaya Tekhnika, Ser. 1. Elektronika SVCh, n.3, p.22-25, 2015.

DONETSKY, R.V.; IVANOV, I.M.; PETYUSHIN, N.V.; SKRIPKIN, N.I. Regenerative amplifier on synchronized magnetrons of three millimeter wavelength band. Naukoemkie Tekhnologii, n.11, p.51-55, 2015. URL: http://www.radiotec.ru/catalog.php?cat=jr8&art=17026.

NAUMENKO, V.D.; FEDII, R.P. Millimeter band pulsed magnetron in the self-synchronization mode. Izv. Vyssh. Uchebn. Zaved., Radiofizika, v.29, n.11, p.1399-1400, 1986.

http://www.salut.nn.ru/.

http://www.pluton.msk.ru/catalog/.

SKRIPKIN, N.I. Magnetrons of 2-mm wavelength band: new developments of Pluton company. Electronics: Science, Technology, Business, n.7, p.66-67, 2011. URL: http://www.electronics.ru/journal/article/3034.

http://www.oao-tantal.ru/cat.php.

LYASHENKO, A.V.; SOLOPOV, A.A.; FEDORENKO, E.A.; ET AL. High-power pulsed 3-mm magnetron with service life of 2000 hours. Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6-8 Sept. 2011, Nizhegorodskaya Oblast, s. Khakhaly, Nizhniy Novgorod, Russia. Nizhniy Novgorod, 2011.

http://www.salut.nn.ru/index.php/mamp/50--.html.

ZAV’YALOV, S.K.; TSUKANOV, A.A. Pulsed coaxial magnetron of 2 mm wavelength band. Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6-8 Sept. 2011, Nizhegorodskaya Oblast, s. Khakhaly, Nizhniy Novgorod, Russia. Nizhniy Novgorod, 2011.

SCHUNEMANN, K.; SOSNYTSKIY, S.V.; VAVRIV, D.M. Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode. IEEE Trans. Electron. Devices, v.48, n.5, p.993-998, 2001. DOI: http://doi.org/10.1109/16.918248.

ESFAHANI, NASRIN NASR; SCHÜNEMANN, KLAUS; AVTOMONOV, NICKOLAY; VAVRIV, DMYTRO. Epsilon near zero loaded magnetrons, design and realization. Proc. of 45th European Microwave Conf., 7-10 Sept. 2015, Paris, France. IEEE, 2015, p.454-457, DOI: http://doi.org/10.1109/EuMC.2015.7345798.

SCHUENEMANN, KLAUS; SEREBRYANNIKOV, A.E.; SOSNYTSKIY, S.V.; VAVRIV, D.M. Optimizing the spatial-harmonic millimeter-wave magnetron. Phys. Plasmas, v.10, n.6, p.2559-2565, 2003. DOI: http://dx.doi.org/10.1063/1.1565337.

LI, SHENGEN; LI, FENGLING; YANG, JINSHENG; YAN, TIECHANG; DU, BO; SHI, WEI. Development of a miniaturized W-band spatial harmonic magnetron. IEEE Trans. Electron Devices, v.63, n.6, p.2925-2929, 2016. DOI: http://doi.org/10.1109/TED.2016.2569002.

GOLANT, M.B.; MAKLAKOV, A.A.; SHUR, M.B. Manufacture of Resonators and Slowing Structures of Electronic Devices [in Russian]. Moscow: Sov. Radio, 1969.

Published

2017-04-17

Issue

Section

Review Articles