Performance comparison of space-time block and trellis codes in the MIMO land mobile satellite channels

Authors

  • Qingfeng Jing Nanjing University of Aeronautics and Astronautics, China
  • Jiajia Wu PANDA Electronics Group Co. Ltd., Nanjing, China

DOI:

https://doi.org/10.3103/S0735272717010010

Keywords:

MIMO, STBC, STTC, space-time block code, space-time trellis code, land mobile satellite channel, LMS channel, Markov chain

Abstract

Due to the crowded orbits and shortage of frequency resources, the use of MIMO technology to improve spectrum efficiency and an increase of the capacity have become a necessary trend of broadband satellite communication. Firstly, we analyze the main influenced factors and compare the bit error rate (BER) performance of space-time block code (STBC) scheme and space-time trellis code (STTC) scheme. Then we build up the model of land mobile satellite (LMS) channel under different environments by using 3-state Markov chain. This paper emphatically studies the BER performance of STTC and STBC in the MIMO satellite channel. The main emphasis is placed on the effects of different factors, such as terminal environment and elevation angles, on the BER performance of STBC and STTC schemes. Simulation results indicate that performance of STTC in Rayleigh channel is obviously improved with the increasing number of transmitting and receiving antennas, but the encoder state has little impact on the performance. In the Rayleigh channel, the performance of Alamouti code is better than that of STTC. In the LMS channel, performance of these two kinds of space-time coding in open area is optimal, and in the urban area it is the worst. Nevertheless, performance of STTC is slightly superior to the performance of STBC under different circumstances. Under the same environmental conditions, BER of STBC and STTC reduces with the increase of the satellite altitude angle, and therefore, the BER curves of STTC fall faster.

References

TELATAR, I.E. Capacity of multi-antenna Gaussian channels. EUR T TELECOMMUN, v.10, n.6, p.585-595, 1999. DOI: http://dx.doi.org/10.1002/ett.4460100604.

LOO, CHUN. A statistical model for a land mobile satellite link. IEEE Trans. Vehicular Technol., v.34, n.3, p.122-127, 1985. DOI: http://dx.doi.org/10.1109/T-VT.1985.24048.

FONTAN, F.P.; VAZQUEZ-CASTRO, M.; CABADO, C.E.; GARCIA, J.P.; KUBISTA, E. Statistical modeling of the LMS channel. IEEE Trans. Vehicular Technol., v.50, n.6, p.1549-1567, 2001. DOI: http://dx.doi.org/10.1109/25.966585.

GESBERT, DAVID; SHAFI, MANSOOR, SHIU, DA-SHAN; SMITH, P.J.; NAGUIB A. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas Commun., v.21, n.3, p.281-302, 2003. DOI: http://dx.doi.org/10.1109/JSAC.2003.809458.

FOSCHINI, GERARD J.; Layered space-time architecture for wireless communication in fading environment when using multi-element antennas. Bell Labs Tech. J., v.1, n.2, p.41-59, 1996. DOI: http://dx.doi.org/10.1002/bltj.2015.

YONGZHAO, LI; GUISHENG, LIAO; FENG, WANG. Improved BLAST for wireless communications. J. Systems Engineering Electronics, v.17, n.1, p.48-53, 2006. DOI: http://dx.doi.org/10.1016/S1004-4132(06)60009-1.

ALAMOUTI, S.M. A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun., v.16, n.8, p.1451-1458, 1998. DOI: http://dx.doi.org/10.1109/49.730453.

TAROKH, V.; JAFARKHANI, H.; CALDERBANK A.R. Space-time block coding for wireless communications: performance results. IEEE J. Sel. Areas Commun., v.17, n.3, p.451-460, 1999. DOI: http://dx.doi.org/10.1109/49.753730.

TAROKH, V.; SESHADRI, N.; CALDERBANK, A.R. Space-time codes for high date rate wireless communication: Performance criterion and code construction. IEEE Trans. Inf. Theory, v.44, n.2, p.744-765, 1998. DOI: http://dx.doi.org/10.1109/18.661517.

TOLGA, M.; GHRAYEB, ALI. Coding for MIMO Communication System. England: John Wiley & Sons Ltd, 2007.

YU, XIANGBIN; BI, GUANGGUO. Power control scheme for multiple antenna systems with space-time coding in Rayleigh fading channels. J. Systems Engineering Electronics, v.22, n.5, p.730-738, 2011. DOI: http://dx.doi.org/10.3969/j.issn.1004-4132.2011.05.002.

KING, PETER R.; STAVROU, STAVROS (2006). Characteristics of the land mobile satellite MIMO channel. Proc. of IEEE Conf. on Vehicular Technology, 2006. IEEE, pp.1-4. DOI: http://dx.doi.org/10.1109/VTCF.2006.37.

CHO, YONG SOO; KIM, JAEKWON; YANG, WON YOUNG; KANG, CHUNG G. MIMO-OFDM Wireless Communications with Matlab. Singapore-England: John Wiley & Sons Ltd, 2010.

FONTÁN, F.P.; GONZÁLEZ, J.P.; FERREIRO, M.J.S.; CASTRO, M.A.V.; BUONOMO, S.; BAPTISTA, J.P. Complex envelope three-state Markov model based simulator for the narrow-band LMS channel. Int. J. Satellite Commun. Networking, v.15, n.1, p.1-15, 1997. DOI: http://dx.doi.org/10.1002/(SICI)1099-1247(199701)15:1<1::AID-SAT563>3.0.CO.

Published

2017-01-15

Issue

Section

Research Articles