Modulation instability of transversely limited electromagnetic waves of terahertz range in strontium titanate paraelectric
DOI:
https://doi.org/10.3103/S0735272716110029Keywords:
THz radiation, cubic nonlinearity, frequency dispersion, modulation instability, short pulsesAbstract
In the framework of developed approximate phenomenological model we have performed the investigation of modulation instability of transversely limited electromagnetic waves of terahertz range in paraelectric crystals SrTiO3 at the temperatures of about 77 K. Cubic nonlinearity and frequency dispersion correspond to the existence of modulation instability of long input pulses. The results of numerical investigations of the modulation instability are presented. Transversal boundedness of the input pulses can stabilize the modulation instability. Modulation instability threshold is reduced in the presence of reflections from the crystal boundaries. In the case of development of the modulation instability it is possible to generate a sequence of short terahertz pulses at the output of the crystal. The focusing of input pulses reduces the threshold of modulation instability.References
LEE, YUN-SHIK. Principles of Terahertz Science and Technology. N.Y.: Springer, 2009, 340 p., DOI: http://dx.doi.org/10.1007/978-0-387-09540-0.
PERENZONI, MATTEO; PAUL, DOUGLAS J. (eds.). Physics and Applications of Terahertz Radiation. N.Y.: Springer, 2014, 255 p., DOI: http://dx.doi.org/10.1007/978-94-007-3837-9.
SIEGEL, PETER H. Terahertz pioneer: Erik L. Kollberg “Instrument Maker to the Stars”. IEEE Trans. Terahertz Sci. Technology, Sept. 2014, v.4, n.5, p.538-544, DOI: http://dx.doi.org/10.1109/TTHZ.2014.2344191.
WARD, JOHN S.; CHATTOPADHYAY, GOUTAM; GILL, JOHN; JAVADI, HAMID; LEE, CHOONSUP; LIN, ROBERT; MAESTRINI, ALAIN; MAIWALD, FRANK; MEHDI, IMRAN; SCHLECHT, ERICH; SIEGEL, PETER. Tunable broadband frequency-multiplied terahertz sources. Proc. of 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, IRMMW-THz, 15-19 Sept. 2008, Pasadena, CA. IEEE, 2008, p.1-3, DOI: http://dx.doi.org/10.1109/ICIMW.2008.4665437.
LEBEDEV, A.I. Physics of Semiconductor Devices. Moscow: Fizmatlit, 2008 [in Russian].
KIVSHAR, Y.S.; AGRAWAL, G.P. Optical solitons: From Fibers to Photonic Crystals. Academic Press, 2003.
VENDIK, O.G. (ed.), Ferroelectrics in Microwave Engineering. Moscow: Sov. Radio, 1979 [in Russian].
REZ, I.S.; POPLAVKO, Y.M. Dielectrics. Fundamental Properties and Application in Electronics. Moscow, Radio i Svyaz’, 1989 [in Russian].
POPLAVKO, Y.M.; PEREVERZEVA, L.P.; VORONOV, S.O.; YAKYMENKO, Y.I. Material Physics. Part 2: Dielectrics. Kyiv: NTUU KPI, 2007 [in Ukrainian].
GEVORGIAN, SPARTAK. Ferroelectrics in Microwave Devices, Circuits and Systems. N.Y.: Springer, 2009, 394 p., DOI: http://dx.doi.org/10.1007/978-1-84882-507-9.
IVANOV, I.V.; BUZIN, I.M.; BELOKOPYTOV, G.V.; SYCHEV, V.M.; CHUPRAKOV, V.F. Low temperature ferroelectrics: Dielectric nonlinearity, losses, and parametric interactions at ultrahigh frequencies. Soviet Physics Journal, Aug. 1981, v.24, n.8, p.684-704, DOI: http://dx.doi.org/10.1007/BF00941340.
GASSANOV, L.G.; KOSHEVAYA, S.V.; NARYTNIK, T.N.; OMELIANENKO, M.Y. Parametric and nonlinear interaction of electromagnetic waves in paraelectrics. Radioelektron. Commun. Syst., 1978, v.21, n.10, p.56.
KOSHEVAYA, S.V.; GASSANOV, L.G.; OMELIANENKO, M.Y. Generation of the third harmonic in dispersion-free nonlinear dielectric. Ukrainian Journal of Physics, 1980, v.25, n.7, p.1118-1123.
KOSHEVAYA, S.V.; KONONOV, M.V.; OMELIANENKO, M.Y. The influence of dispersion in waveguide systems with cubic nonlinear dielectrics. Radioelektron. Commun. Syst., 1985, v28, n.3, p.53.
KONONOV, M.V.; KOSHEVAYA, S.V.; OMELIANENKO, M.Y. Nonlinear microwaves in crystals. Sb. Kvantovaya Elektronika. Inst. Poluprovodnikov AN USSR, 1984, v.26, p.55-68.
GASSANOV, L.G.; KOSHEVAYA, S.V.; OMELIANENKO, M.Y. Frequency multiplication in paraelectrics. Radiotekh. Elektron., 1980, v.25, n.6, p.1238-1243.
GRIMALSKY, V.V.; KOSHEVAYA, S.V. Automodulation instability and solitons in ferroelectrics. Technical Physics Letters, 1987, v.13, n.17, p.1070-1073.
VUGMEYSTER, ILYA D. Development of a terahertz time-domain spectrometer optimized at 5-8 THz and the study of surface polaritons in NiO–SrTiO3 nano-composite ceramics. PhD dissertation. The University of Michigan, 2013, 121 p., http://hdl.handle.net/2027.42/99843.
KAMARS, K.; BARTH, K.-L.; KEILMANN, F.; HENN, R.; REEDYK, M.; THOMSEN, C.; CARDONA, M.; KIRCHER, J.; RICHARDS, P.L.; STEHLE, J.-L. The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry. J. Appl. Phys., 1995, v.78, n.3, p.1235-1240, DOI: http://dx.doi.org/10.1063/1.360364.
YASHCHYSHYN, Y.; GODZISZEWSKI, K.; BAJURKO, P.; MODELSKI, J.; SZAFRAN, M.; BOBRYK, E.; PAWLIKOWSKA, E.; TARAPATA, G.; WEREMCZUK, J.; JACHOWICZ, R. Tunable ferroelectric ceramic-polymer composites for sub-THz applications. Proc. of 43rd European Microwave Conf., EuMC, 7-10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, p.676-679, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6686746.
ZAMUDIO-LARA, A.; KOSHEVAYA, S.V.; GRIMALSKY, V.V.; YAÑEZ-CORTES, F. Frequency multiplication of terahertz radiation in the crystals of strontium titanate paraelectric. Radioelectron. Commun. Syst., 2015, v.58, n.9, p.411-416, DOI: http://dx.doi.org/10.3103/S0735272715090034.
KODAMA, Y.; HASEGAWA, A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., May 1987, v.23, n.5, p.510-524, DOI: http://dx.doi.org/10.1109/JQE.1987.1073392.
MARCHUK, G.I. Splitting Methods. Moscow: Nauka, 1988 [in Russian].
SAMARSKIY, A.A. Theory of Difference Schemes. Moscow: Nauka, 1989 [in Russian].