Estimation of the optical pulse duration with rectangular intensity profile of unknown height
DOI:
https://doi.org/10.3103/S0735272716100010Keywords:
quasi-likelihood estimate, maximum likelihood estimate, scattering of estimates, a priori parametric uncertaintyAbstract
The quasi-likelihood and maximum likelihood algorithms of duration estimation have been synthesized and analyzed. The losses in accuracy of quasi-likelihood estimate caused by a priori lack of knowledge of pulse intensity were also found. The accuracy of the maximum likelihood estimate of duration was found to be asymptotically invariant to the presence of a priori information about the pulse intensity.References
SHEREMET’EV, A.G. Statistical Theory of Laser Communications. Moscow: Svyaz’, 1971 [in Russian].
VOLOKHATYUK, V.A.; KOCHETKOV, V.M.; KRASOVSKII, R.R. Optical Detection Problems. Moscow: Sov. Radio, 1971 [in Russian].
GAGLIARDI, R.M.; KARP, S. Optical Communications, 2nd ed. Wiley, 1995.
VOROB’EV, V.I. Evaluation of coordinates of the optical radiation source having rectangular intensity profile. Optiko-Mekhanicheskaya Promyshlennost, 1978, n.4, p.14-16.
VOROB’EV, V.I. Optical Detection and Ranging for Radio-Engineers. Moscow: Radio i Svyaz’, 1983 [in Russian].
OVCHINNIKOVA, T.M.; TRIFONOV, A.P. Detection and estimation of the instant of change of unknown intensity of a Poisson flow. I. Automation and Remote Control, 1999, v.60, n.1, p.52-60.
KULIKOV, E.I.; TRIFONOV, A.P. Estimated Parameters of Signals against the Background of Interferences. Moscow: Sov. Radio, 1978 [in Russian].
BOL’SHAKOV, I.A.; RAKOSHITS, V.S. Applied Theory of Stochastic Flows. Moscow: Sov. Radio, 1978 [in Russian].
MUDROV, V.I.; KUSHKO, V.L. Measurement Processing Methods. Quasi-likelihood Estimates. Moscow: Radio i Svyaz’, 1983 [in Russian].
STRATONOVICH, R.L. Selected Problems of the Theory of Fluctuations in Radio Engineering. Moscow: Sov. Radio, 1961 [in Russian].
SOSULIN, Y.G. The Theory of Detection and Estimation of Stochastic Signals. Moscow: Sov. Radio, 1978 [in Russian].
TRIFONOV, A.P.; KORCHAGIN, Y.E.; BESPALOVA, M.B. Statistical properties of height and provisions of absolute maximum Markov processes Bachelier type. Vestnik VGU. Ser. Fizika, Matematika, 2014, n.4, p.35-43, http://www.vestnik.vsu.ru/program/view/view.asp?sec=physmath&year=2014&num=04&f_name=2014-04-07.