Broadband V-band angular transition

Authors

DOI:

https://doi.org/10.3103/S0735272716040051

Keywords:

RWG, SIW, substrate integrated waveguide, millimeter wave band, transition

Abstract

A model of broadband V-band transition from a rectangular air-filled waveguide to substrate integrated waveguide has been proposed. Theoretical principles used for constructing the model of transition are also presented.

References

  1. Radio Regulations. Articles. ITU, 2012, 424 p., http://www.itu.int/dms_pub/itu–s/oth/02/02/S02020000244501PDFE.pdf.
  2. ZHURBENKO, V. Passive Microwave Components and Antennas. Croatia: InTech, 2010, 556 p.
  3. XIA, L.; XU, R.; YAN, B.; LI, J.; GUO, Y.; WANG, J. Broadband transition between air-filled waveguide and substrate integrated waveguide. Electron. Lett., Nov. 2006, v.42, n.24, p.1403-1405, DOI: http://dx.doi.org/10.1049/el:20062228.
  4. LI, J.; WEN, G.; XIAO, F. Broadband transition between rectangular waveguide and substrate integrated waveguide. Electron. Lett., v.46, n.3, p.223-224, Feb. 2010, DOI: http://dx.doi.org/10.1049/el.2010.2518.
  5. SEO, K.; NAKATSU, A.; SAKAKIBARA, K.; KIKUMA, N. Via-hole-less planar microstrip-to-waveguide transition in millimeter-wave band. Microwave Conf. Proc., CJMW, 20-22 Apr. 2011, Hangzhou, China–Japan. IEEE, 2011, p.1-4, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5774005.
  6. NIKRAVAN, M.A.; KWON, DO-HOON. A vertical waveguide-to-suspended stripline transition. Proc. of Int. Symp. on Antennas and Propagation Soc., APSURSI, 6-11 Jul 2014, Memphis. IEEE, 2014, p.1696-1697, DOI: http://dx.doi.org/10.1109/APS.2014.6905174.
  7. LI, LIN; CHEN, XIAO PING; KHAZAKA, RONI; WU, KE. A transition from substrate integrated waveguide (SIW) to rectangular waveguide. Proc. of Asia Pacific Microwave Conf., APMC, 7-10 Dec. 2009, Singapore. IEEE, 2009, p.2605-2608, DOI: http://dx.doi.org/10.1109/APMC.2009.5385245.
  8. GLOGOWSKI, R.; ZURCHER, J.; PEIXEIRO, C.; MOSIG, J.R. Double resonance transition from rectangular waveguide to Substrate Integrated Waveguide. Proc. of 7th European Conf. on Antennas and Propagation, EuCAP, 8-12 Apr. 2013, Gothenburg. IEEE, 2013, p.3353-3354, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6546933.
  9. LI, YUJIAN; LUK, KWAI-MAN. A broadband V-band rectangular waveguide to substrate integrated waveguide transition. IEEE Microwave Wireless Compon. Lett., Sept. 2014, v.24, n.9, p.590-592, DOI: http://dx.doi.org/10.1109/LMWC.2014.2325217.
  10. CASSIVI, Y.; PERREGRINI, L.; ARCIONI, P.; BRESSAN, M.; WU, K.; CONCIAURO, G. Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave Wireless Compon. Lett., Sept. 2002, v.12, n.9, p.333-335, DOI: http://dx.doi.org/10.1109/LMWC.2002.803188.
  11. MIKULASEK, T.; LACIK, J. Microstrip patch antenna fed by Substrate Integrated Waveguide. Proc. of Int. Conf. on Electromagnetics in Advanced Applications, ICEAA, 12-16 Sept. 2011, Torino. IEEE, 2011, p.1209-1212, DOI: http://dx.doi.org/10.1109/ICEAA.2011.6046523.
  12. IIZUKA, H.; SAKAKIBARA, K.; KIKUMA, N. Millimeter-wave transition from waveguide to two microstrip lines using rectangular patch element. IEEE Trans. Microwave Theory Tech., May 2007, v.55, n.5, p.899-905, DOI: http://dx.doi.org/10.1109/TMTT.2007.895139.
  13. BALANIS, C.A. Antenna Theory, 2nd ed. NJ: John & Sons, Hoboken, 2004, 1047 p.

Published

2016-04-21

Issue

Section

Research Articles