Magnetothermia utilization in the curing of malignancies. Part 2
DOI:
https://doi.org/10.3103/S0735272715030024Keywords:
magnetic antenna, diffusion, convection, turbulence, magnetothermiaAbstract
Non-uniform thermal and magnetic fields connected with the change in the geometry of the applicator antenna and their influence on convective flows of blood transporting medicaments have been considered.
References
- LOSHITSKIY, P.P.; NIKOLOV, N.A. Magnetothermia utilization in the curing of malignancies. Part 1. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, v.58, n.2, p.3-16, http://radio.kpi.ua/article/view/S0021347015020016 [Radioelectron. Commun. Syst., 2015, v.58, n.2, p.49-60, DOI: http://dx.doi.org/10.3103/S0735272715020016].
- SHERCLIFF, J.A. A Textbook of Magnetohydrodynamics. Oxford: Pergamon Press, 1965.
- OREL, V.E.; SHCHEPOTIN, I.B.; SMOLANKAI, I.I.; ET AL. Radiofrequency Hyperthermia of Malignancies, Nanotechnologies and Dynamic Chaos. Ternopol: TGMU, 2012, 448 p. [in Russian].
- MITYUSHIN, V.M.; LITINSKAYA, L.L.; KAMINIR, L.B. On the synchronous alteration of cell nuclei. Proc. of the All-Soviet Union Symp. on Oscillating Processes in Biological and Chemical Systems, March 21-26, 1966, Pushchino-on-Oka, Moscow, USSR. Moscow, 1967, p.325-331.
- ROMANOVSKIJ, Y.M.; STEPANOVA, N.A.; CHERNAVSKIJ, D.S. Mathematical Modeling in Biology. Moscow: Nauka, 1975, 344 p. [in Russian].
- GERSHUNI, G.Z.; ZHUKHOVITSKY, E.M.; NEPOMNJASHCHY, A.A. Stability of Convective Flows. Moscow: Nauka, 1989, 319 p. [in Russian].
- GERSHUNI, G.Z.; ZHUKHOVITSKY, E.M. Convective Stability of Incompressible Liquid. Moscow: Nauka, 1972, 392 p. [in Russian].
- GERSHUNI, G.Z.; ZHUKHOVITSKII, E.M.; MYZNIKOV, V.M.; Stability of a plane-parallel convective flow of a liquid in a horizontal layer. J. Appl. Mech. Tech. Phys., 1974, v.15, n.1, p.78-82, DOI: http://dx.doi.org/10.1007/BF00850732.
- ROSENSWEIG, R.E. Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.
- OREL, V.E.; LYTVYNENKO, S.V.; SMOTROV, I.V.; ET AL. UA Patent No. 31237, 25 Mar. 2008.
- NІKOLOV, N.A. The experimental estimation of kinetics alteration of 99mTc-MIBI in Walker-256 carcinosarcoma under the influence of spatially-inhomogeneous electromagnetic field. Proc. of the IV Congress of Ukrainian Society of Nuclear Medicine Specialists, 26–27 Sept. 2011, Odesa, Ukraine. 2011, v.XIX, n.3, p.312-315.
- KLYATSKIN, V.I.; KOSHEL’, K.V. Simple example of the development of cluster structure of a passive tracer field in random flows. Phys. Usp., 2000, v.43, n.7, p.717, DOI: http://dx.doi.org/10.1070/PU2000v043n07ABEH000743.
- KLYATSKIN, V.I. Stochastic Equations and Waves in Randomly Inhomogeneous Mediums. Moscow: Nauka, 1980, 289 p. [in Russian].
- BALESCU, R. Equilibrium and Nonequilibrium Statistical Mechanics, Vol. 1. New York–London–Sydney–Toronto: Wiley-Interscience, 1975.
- KLYATSKIN, V.I.; GURARIE, D. Coherent phenomena in stochastic dynamical systems. Phys. Usp., 1999, v.42, n.2, p.165, DOI: http://dx.doi.org/10.1070/pu1999v042n02ABEH000522.
- HORTON, C.W.; ROGERS Jr., F.T. Convection currents in a porous medium. J. Appl. Phys., 1945, v.16, n.6, p.367-370, DOI: http://dx.doi.org/10.1063/1.1707601.
- POLUBARINOVA-KOCHINA, P.Y. Theory of Ground Waters Motion. Moscow: GITTL, 1952, 676 p. [in Russian].
- ZOLOTAREV, P.P. The conditions of formation of thermal convection in porous bed. Engineering Journal, 1965, v.5, n.2, p.236-238.

Downloads
Published
2015-03-21
Issue
Section
Research Articles