Magnetothermia utilization in the curing of malignancies. Part 2

Authors

DOI:

https://doi.org/10.3103/S0735272715030024

Keywords:

magnetic antenna, diffusion, convection, turbulence, magnetothermia

Abstract

Non-uniform thermal and magnetic fields connected with the change in the geometry of the applicator antenna and their influence on convective flows of blood transporting medicaments have been considered.

References

LOSHITSKIY, P.P.; NIKOLOV, N.A. Magnetothermia utilization in the curing of malignancies. Part 1. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, v.58, n.2, p.3-16, http://radio.kpi.ua/article/view/S0021347015020016 [Radioelectron. Commun. Syst., 2015, v.58, n.2, p.49-60, DOI: http://dx.doi.org/10.3103/S0735272715020016].

SHERCLIFF, J.A. A Textbook of Magnetohydrodynamics. Oxford: Pergamon Press, 1965.

OREL, V.E.; SHCHEPOTIN, I.B.; SMOLANKAI, I.I.; ET AL. Radiofrequency Hyperthermia of Malignancies, Nanotechnologies and Dynamic Chaos. Ternopol: TGMU, 2012, 448 p. [in Russian].

MITYUSHIN, V.M.; LITINSKAYA, L.L.; KAMINIR, L.B. On the synchronous alteration of cell nuclei. Proc. of the All-Soviet Union Symp. on Oscillating Processes in Biological and Chemical Systems, March 21-26, 1966, Pushchino-on-Oka, Moscow, USSR. Moscow, 1967, p.325-331.

ROMANOVSKIJ, Y.M.; STEPANOVA, N.A.; CHERNAVSKIJ, D.S. Mathematical Modeling in Biology. Moscow: Nauka, 1975, 344 p. [in Russian].

GERSHUNI, G.Z.; ZHUKHOVITSKY, E.M.; NEPOMNJASHCHY, A.A. Stability of Convective Flows. Moscow: Nauka, 1989, 319 p. [in Russian].

GERSHUNI, G.Z.; ZHUKHOVITSKY, E.M. Convective Stability of Incompressible Liquid. Moscow: Nauka, 1972, 392 p. [in Russian].

GERSHUNI, G.Z.; ZHUKHOVITSKII, E.M.; MYZNIKOV, V.M.; Stability of a plane-parallel convective flow of a liquid in a horizontal layer. J. Appl. Mech. Tech. Phys., 1974, v.15, n.1, p.78-82, DOI: http://dx.doi.org/10.1007/BF00850732.

ROSENSWEIG, R.E. Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.

OREL, V.E.; LYTVYNENKO, S.V.; SMOTROV, I.V.; ET AL. UA Patent No. 31237, 25 Mar. 2008.

NІKOLOV, N.A. The experimental estimation of kinetics alteration of 99mTc-MIBI in Walker-256 carcinosarcoma under the influence of spatially-inhomogeneous electromagnetic field. Proc. of the IV Congress of Ukrainian Society of Nuclear Medicine Specialists, 26–27 Sept. 2011, Odesa, Ukraine. 2011, v.XIX, n.3, p.312-315.

KLYATSKIN, V.I.; KOSHEL’, K.V. Simple example of the development of cluster structure of a passive tracer field in random flows. Phys. Usp., 2000, v.43, n.7, p.717, DOI: http://dx.doi.org/10.1070/PU2000v043n07ABEH000743.

KLYATSKIN, V.I. Stochastic Equations and Waves in Randomly Inhomogeneous Mediums. Moscow: Nauka, 1980, 289 p. [in Russian].

BALESCU, R. Equilibrium and Nonequilibrium Statistical Mechanics, Vol. 1. New York–London–Sydney–Toronto: Wiley-Interscience, 1975.

KLYATSKIN, V.I.; GURARIE, D. Coherent phenomena in stochastic dynamical systems. Phys. Usp., 1999, v.42, n.2, p.165, DOI: http://dx.doi.org/10.1070/pu1999v042n02ABEH000522.

HORTON, C.W.; ROGERS Jr., F.T. Convection currents in a porous medium. J. Appl. Phys., 1945, v.16, n.6, p.367-370, DOI: http://dx.doi.org/10.1063/1.1707601.

POLUBARINOVA-KOCHINA, P.Y. Theory of Ground Waters Motion. Moscow: GITTL, 1952, 676 p. [in Russian].

ZOLOTAREV, P.P. The conditions of formation of thermal convection in porous bed. Engineering Journal, 1965, v.5, n.2, p.236-238.

Published

2015-03-21

Issue

Section

Research Articles